spark-RDD源码分析】的更多相关文章

/** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: 我们都知道一段sql,真正的执行是当你调用它的collect()方法才会执行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包含4种操作类型,即BasicOperator基本类型,还…
上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External DataSource使用篇地址:Spark SQL之External DataSource外部数据源(一)示例 http://blog.csdn.net/oopsoom/article/details/42061077) 一.Sources包核心 Spark SQL在Spark1.2中提供了External…
/** Spark SQL源码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式. 一.引子 本例使用hive console里查询cache后的src表. select value from src 当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用…
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效率. 这就涉及到内存中的数据的存储形式,我们知道基于关系型的数据可以存储为基于行存储结构 或 者基于列存储结构,或者基于行和列的混合存储,即Row Based Storage.Column Based Storage. PAX Storage. Spark SQL 的内存数据是如何组织的? Spar…
/** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,而且发展速度异常迅猛,究其原因,个人认为有以下2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样可以应用于多种任务,流处理,批处理,包括机器学习里都可以引入Sql.    2.效率:因为Shark受到hive的编程模型限制,无法再继续优化来适应Spark…
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二篇 Spark SQL Catalyst源码分析之SqlParser 第三篇 Spark SQL Catalyst源码分析之Analyzer 第四篇 Spark SQL Catalyst源码分析之TreeNode Library 第五篇 Spark SQL Catalyst源码分析之Optimize…
RDD源码解析 一. RDD.scala - Resilient Distributed Dataset (RDD) 弹性分布式数据集 弹性: 体现在计算上面 - the basic abstraction in Spark - Represents an immutable val RDDA == RDDB - partitioned collection of elements - that can be operated on in parallel RDDA: (1,2,3,4,5,6,…
一.概述 Spark源码整体的逻辑(spark1.3.1): 从saveAsTextFile()方法入手 -->saveAsTextFile()  --> saveAsHadoopFile()  --> 封装hadoopConf,并传入saveAsHadoopDataset()方法 --> 拿到写出流SaprkHadoopWriter,调用self.context.runJob(self,writeToFile)  --> runJob方法中,使用dagScheduler划分…
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)   在上一篇中介绍了Receiver的整体架构和设计原理,本篇内容主要介绍Receiver在Executor中数据接收和存储过程 一.Receiver启动过程回顾 如图,从ReceiverTracker的start方法开始,调用launchReceivers()方法,给endpoint发送消息,endpoint.send(StartAllReceivers(receivers)),endp…
在客户端执行脚本sbin/spark-submit的时候,通过cat命令查看源码可以看出,实际上在源码中将会执行bin/spark-class org.apache.spark.deploy.SparkSubmit . 在IDEA导入的Spark-Core的源码进行分析. 首先Spark会把初始化的参数使用SparkSubmitArguments进行封装,之后对SparkSubmitAction类型进行模式匹配,一共有三种:1.SUBMIT 2. KILL 3. REQUEST_STATUS.…