L1范数与L2范数​】的更多相关文章

L1范数与L2范数​ ​ L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干扰能力. 1. 防止过拟合 ​ L2正则项优化目标函数时,一般倾向于构造构造较小参数,一般认为,参数值较小的模型相对简单,能适应不同的数据集,在一定程度上避免过拟合的现象,参数较小,数据偏移带来的影响也会较小,从而说L2正则项具有较好的抗干扰能力,从而实现防止过拟合的现象. ​ L1正则项也可以防止…
2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾模型的泛化力,防止发生过拟合的情况.为了平衡这两难的选择,通常采用两种模型正则化的方法:L1范数正则化与L2范数正则化. 正则化的目的:提高模型在未知测试数据上的泛化力,避免参数过拟合. 正则化常见方法:在原模型优化目标的基础上,增加对参数的惩罚项.  L1范数正则化 这种正则化方法结果会让参数向量…
给定向量x=(x1,x2,...xn)L1范数:向量各个元素绝对值之和L2范数:向量各个元素的平方求和然后求平方根Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方L∞范数:向量各个元素求绝对值,最大那个元素的绝对值…
范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title 首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度 主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数 0-1损失函数: 平方损失函数: 绝对损失函数: 对数损失函数: 由此延伸出对应的概念…
范式可以理解成距离 转载自: https://blog.csdn.net/hanhuili/article/details/52079590 内容如下: 由此可见,L2其实就是欧式距离.工程上,往往不做开平方处理.…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示向量中非零元素的个数: \(||x||_{0} = \#(i)\ with\ \ x_{i} \neq 0\) 也就是如果我们使用L0范数,即希望w的大部分元素都是0. (w是稀疏的)所以可以用于ML中做稀疏编码,特征选择.通过最小化L0范数,来寻找最少最优的稀疏特征项.但不幸的是,L0范数的最优化…
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…