UOJ #310「UNR #2」黎明前的巧克力】的更多相关文章

神仙题啊... UOJ #310 题意 将原集合划分成$ A,B,C$三部分,要求满足$ A,B$不全为空且$ A$的异或和等于$ B$的异或和 求方案数 集合大小 $n\leq 10^6$ 值域$val \leq 10^6$ 题解 如果要满足$ A,B$的异或和相同,必然有$ A \cup B$中所有元素异或和为$ 0$ 如果存在这样一个集合$ A \cup B$,这之中的每个元素可以在集合$ A$中也可以在集合$ B$中 即对答案产生$ 2^{|A|+|B|}$的贡献 设每个元素$ a_i$…
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\prod_{i=1}^{n} (2x^{a_i}+1) \] 因为每一项只有两项 \(x^0,x^{a_i}\) 有值,记 \(f_i(x) =2x^{a_i}+1\), \(f'_i(x)=\text{Fwt}f(x)\) ,有 \[ f_i'(x)=\sum_{S} (1+2\times(-1)^…
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) FWT之后,一定只有-1,3 而FWT的和等于和的FWT 所以做和,然后FWT一下 列方程就可以得到每一位的-1和3的个数了 而对于一些多项式,分别FWT.IFWT和FWT后乘起来再IFWT是一样的 我们已经快速幂得到n个多项式FWT的乘积了 再做一次IFWT即可 还是想到FWT集体处理,必然要注意顺…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个集合交换一下也算一种),问有多少种选择方案使得两个集合各自包含的数的异或值 相等. 不能两个都不选. $n,a_i\leq 10^6$ 题解 首先,问题可以转化成:选择两个集合,他们的异或值为 $0$ . 我们可以构造幂级数. 对于 $a_i$ 我们构造: $h_i(x)=x^0+2x^{a_i}$…
目录 @description@ @solution@ @accepted code@ @details@ @description@ Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开始为一个被称为UOJ的神秘的OI组织工作,在 Evan 与其他小伙伴的努力下,UOJ不仅成了OI界原创比赛的典范,更是因UR这一反人类难度的存在而举世闻名.然而今年,随着 Evan 前往世界彼岸,UOJ一天天减少着他的活力,而就在OI历新年的黎明--NOI的前夕,刚回家不久的Evan听到了清脆的敲门…
题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 998244353\) . \(n, a_i \le 10^6\) 题解 简单转化一下,其实就是对于每个选取集合中元素异或积为 \(0\) 的集合,都会有 \(2^{|S|}\) 的贡献. 用集合幂级数形式写出来其实就等价于: \[ \prod_{i = 1}^{n} (1 + 2x^{a_i}) \]…
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using namespace std; const int MAXN = (1 << 23) + 10, mod = 998244353, inv2 = (mod + 1) / 2, inv4 = 748683265, lim = 1048576; inline int read() { char c =…
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其贡献是\(2^s\). 于是我们可以弄出若干个\((1+2x^{a_i})\)这样子的多项式,然后异或卷积把它们卷起来就是答案. 根据\(FWT\)异或卷积的理论,如果\(i\)位置有一个\(1\),那么\(FWT\)之后对于\(j\)位置的贡献是\(-1^{pop\_count(i\&j)}\).…
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j $ 的方案数, 有 $ f[i][j]= f[i-1][j] + 2 * f[i-1][j \oplus a[i]] $ . 可以考虑FWT,但很明显时间复杂度没有优化. 但另一方面,每层的卷积卷的都是 $ 1,0,0,...,2,0,0,... $ 的形式, 这样一来卷之后每项都是 $ -1 $…
[UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 dp ,令 \(dp_{i,j}\) 代表前 \(i\) 个数字 xor 和为 \(j\) 的集合个数 显然转移为 \[ dp_{i,j}=dp_{i-1,j}+2dp_{i-1,j \ xor \ a_i} \] 从 FWT 的角度考虑,转移其实就是每次卷上 b \[ b_{0}=1,b_{a[…