目录 1. 故事 2. 动机 3. 做法 3.1 DRDB 3.2 训练方法 4. 实验 发表于2019 Sensors.这篇文章的思想可能来源于2018 ECCV的SkipNet[11]. 没开源,和SkipNet基本一致,没什么创新点. 1. 故事 本文的改造对象是RDN.RDN由多个RDB组成,用于一般的图像恢复任务.但是,RDN只能用于单一水平的噪声[设计初衷是非盲的].作者希望在RDN的基础上实现两个目标: 能够盲去噪. 能够根据输入噪声的程度,动态调整RDB数量(同一RDN种跳过的R…
目录 Residual dense block & network 和DenseNet的不同 摘要和结论 发表在2018年CVPR. 摘要和结论都在强调方法的优势.我们还是先从RDN的结构看起,再理解它的背景和思想. Residual dense block & network 乍一看,这种block结构就是在内部采用了稠密连接,在外部采用残差学习.并且,RDN在全局上也是类似的设计:内部稠密,整体残差.无论是RDB还是RDN,内部都同时采用了\(3 \times 3\)和\(1 \tim…
目录 1. 相关工作 2. Residual Attention Network 2.1 Attention残差学习 2.2 自上而下和自下而上 2.3 正则化Attention 最近看了些关于attention的文章.Attention是比较好理解的人类视觉机制,但怎么用在计算机问题上并不简单. 实际上15年之前就已经有人将attention用于视觉任务,但为什么17年最简单的SENet取得了空前的成功?其中一个原因是,前人的工作大多考虑空间上的(spatial)注意力,而SENet另辟蹊径,…
一.Residual Attention Network 简介 这是CVPR2017的一篇paper,是商汤.清华.香港中文和北邮合作的文章.它在图像分类问题上,首次成功将极深卷积神经网络与人类视觉注意力机制进行有效的结合,并取得了远超之前网络结构的准确度与参数效率.仅用与ResNet-50相当的参数量和计算量就得到了远超过ResNet-152的分类性能. 二.Residual Attention Network 的提出 视觉注意力机制是人类视觉所特有的大脑信号处理机制.人类视觉通过快速扫描全局…
Tensorflow 实现 A Tensorflow implementation of CapsNet(Capsules Net) in Hinton's paper Dynamic Routing Between Capsules 项目地址:https://github.com/naturomics/CapsNet-Tensorflow Keras 实现 A Keras implementation of CapsNet in Hinton's paper Dynamic Routing B…
目录 背景 相关工作 主要贡献 核心思想 Embedding和Stacking层 交叉网络(Cross Network) 深度网络(Deep Network) 组合层(Combination Layer) 理论分析 多项式近似 FM的泛化 高效映射 总结及思考 背景 探索具有预测能力的组合特征对提高CTR模型的性能十分重要,这也是大量人工特征工程存在的原因.但是数据高维稀疏(大量离散特征one-hot之后)的性质,对特征探索带来了巨大挑战,进而限制了许多大型系统只能使用线性模型(比如逻辑回归).…
目录 1. 故事 2. 残差学习网络 2.1 残差块 2.2 ResNet 2.3 细节 3. 实验 3.1 短连接网络与plain网络 3.2 Projection解决短连接维度不匹配问题 3.3 更深的bottleneck结构 ResNet的意义已经不需要我在这里赘述.该文发表在2016 CVPR,至今(2019.10)已有3万+引用.由于ResNet已经成为大多数论文的baseline,因此我们着重看其训练细节.测试细节以及bottleneck等思想. 核心: We explicitly…
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and 摘要: 文章动机:人脸识别在一个没有约束的环境下,在计算机视觉中是一个非常有挑战性的问题.同一个身份的人脸当呈现不同的装饰,不同的姿势和不同的表情都可以使人脸看起来完全不同.这种相同身份的变化可以压倒不同身份的变化,这样给人脸识别带来更大的挑战,特别是在没有约束的环境下.…
一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,它 发表于 ECCV 2018 的 Workshops,作者在 SRGAN 的基础上进行了改进,包括改进网络的结构.判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络. 超分辨率生成对抗网络(SRGAN)是一项开创性的工作,能够在单一图像超分辨率中生成逼…
背景 经典MLP不能充分利用结构化数据,本文提出的DIN可以(1)使用兴趣分布代表用户多样化的兴趣(不同用户对不同商品有兴趣)(2)与attention机制一样,根据ad局部激活用户兴趣相关的兴趣(用户有很多兴趣,最后导致购买的是小部分兴趣,attention机制就是保留并激活这部分兴趣).   评价指标 按照user聚合样本,累加每个user组的sum(shows*AUC)/sum(shows).paper说实验表明GAUC比AUC准确稳定.   DIN算法         左边是基础模型,也…