[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000)下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sample I…
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 \[p_i\ge a_j-a_i+\sqrt{|i-j|}\] \[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i\] 绝对值看着很不爽,我们把它拆开 \[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j…
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 题解 决策单调性是个好东西 等学会了再滚回来填坑 //minamoto #include<iostream> #include<cstdio> #include<cmath> using namespace std; #define getc() (p1==p2&…
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单独做.现在假设j都在i左边,则$ p_{i} = max \{ a_{j}-a_{i}+ \sqrt{i-j} \} = max \{ a_{j}+ \sqrt{i-j} \} - a_i$.带根号,不易斜率优化,考虑证决策单调性. 假设最优决策为j,j之前的任意决策称之为$j'$,只与$j$有关的项令之…
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\)分开做. 当\(i>j\)时,\(f_i = \max\limits_{j=1}^{i-1}(a_j + \sqrt{i-j})\).注意到这是一个典型的\(f_i = \max\limits_{j=1}^{i-1}f_j + w(i,j)\)的形式,考虑决策单调性.不难证明\(\sqrt{x + 1}…
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p…
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/7258256.html 注释WA???最近似乎总是WA在二分上... 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; ;…
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times 200\) 的数组 \(d_{i,j}\) 表示从 \((l,i)\) 到 \((r,j)\) 的最短路,合并暴力用类似 floyd 的方式进行转移,这样暴力时间复杂度是 \(RC^3+mC^2\log R+q\),空间复杂度 \(RC^2\),其中 \(m\) 为修改次数,一脸无法通过,而且 T…
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下面给一张图证明这是满足决策单调性的 把$a_j+sqrt(i-j)$表示在坐标系上 显然$sqrt(i-j)$的增长速度趋缓 曲线$a$被曲线$b$超过后是无法翻身的 对两个方向进行决策单调性分治,取$max$即可 #include<iostream> #include<cstdio>…
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sampl…