「考试」num (破800纪念)】的更多相关文章

是第800题啦. 怎么说,$rvalue$学长写的已经挺好的了,我在这里做一点补充,写一点理解. 但是这道题真的值得写一下题解,毕竟一百行也算是数论工程题了. 定义函数 $Fp(k,n)$为$n$中$k$的最大幂次. $Ext(k,n)=n/Fp(k,n)$ 我们要求的就是$Ext(10,n!)%1000$ 怎么做. 首先$Ext$函数在$k$为质数的情况下是完全积性函数.(这里zsq学长出锅了,没有说k是质数) 这个证都不用证吧...根据定义直接出了. 好到这步我都懂,甚至看到最后我都懂. 可…
LOJ#3090. 「BJOI2019」勘破神机 为了这题我去学习了一下BM算法.. 很容易发现这2的地方是\(F_{1} = 1,F_{2} = 2\)的斐波那契数列 3的地方是\(G_{1} = 3,G_{2} = 11\)其中下标表示长度的\(\frac{1}{2}\),可以得到\(G_{3} = 4G_{2} - G_{1}\) 然后我们列一波特征根方程,可以得到 \(m = 2\)时 $$ \left{\begin{matrix} x_{1} = \frac{1 + \sqrt{5}}…
乱扯 爆炸的过程是这样的 写了\(2.5h\)的\(T1\)过不去大样例,自闭了 决定调\(T2\)然后过了样例但事实上写的完全是假的 这个时候突然\(T1\)灵光一闪就没再看\(T2\)了 然后就一直调\(T1\)到结束前半小时 然后怀着爆零的觉悟和破碎的心态十来分钟调了一个假的\(T3\) 然后\(T4\)看都没看甚至连白给的\(20pts\)都不带拿的 然后就并不知道自己四个小时做了什么地交程序了 然后就做好了爆零的心理准备 然后发现最后是\(40+10+5=55\) ~有一说一当时发现有…
9.1 辣鸡 可以把答案分成 每个矩形内部连线 和 矩形之间的连线 两部分 前半部分即为\(2(w-1)(h-1)\),后半部分可以模拟求(就是讨论四种相邻的情况) 如果\(n^2\)选择暴力模拟是有\(35pts\)的 发现按横坐标排序后,如果有一矩形与当前矩形横向不相邻,则之后矩形都是没有贡献的 所以枚举时比较横坐标视情况跳出 因为会产生贡献的矩形对并不多(不超过\(4e5\),具体还会小),所以这样优化以后可以通过 9.2 模板 暴力跳祖先的话是有\(30pts\)的,经过一番纯玄学特判可…
题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网格的方案数. 给定$l, r, k$,求$\frac{1}{r - l + 1}\sum_{i = l}^{r} \binom{F_{i}}{k}$. 给定$l, r, k$,求$\frac{1}{r - l + 1}\sum_{i = l}^{r} \binom{G_{i}}{k}$. 之前好像在…
啊因为最近题实在是好啊,只能四五篇四五篇写了. T1. 括号序列的确简单. 当我们维护左右$cnt$后. 到一个左括号的地方的话. 答案就是:$$\sum\limits_{i=1}^{min(lc,rc)}\binom{lc-1}{i-1}\binom{rc}{i}$$ 因为要固定一个来去重. 等价于: $$\sum\limits_{i=0}^{n}\binom{n}{i}\binom{m}{i}=\sum\limits_{i=0}^{n}\binom{n}{n-i}\binom{m}{i}$$…
考场上想到一半正解,没想到随机化,不然也许能够$A$掉. 题目所说的其实就是向量加法,求模长最长的向量生成树. 我们考虑对于两个向量,必然在平行边形对角线方向上,他们的投影和是最大的,长度就是对角线长度. 如果精度开到$1e-3$我们完全可以枚举最终的和向量的角度,因为只有在对角线,也就是正确的方向上,向量的模长才是最大的,所以也就是说即使枚举的角度不可构成,它得出的解也必然不是最优解. 但是精度开的很高,枚举复杂度过高了.(随机化角度就能A) 接着考虑对于某条向量有两种表达形式: 1.$(\a…
不得不说是一道多项式神题了. 虽然说颓代码颓的很厉害不过最终A掉了. 好好讲一讲这道题. 涉及的知识点是:高阶导数,NTT,指数型母函数,泰勒公式,以及意志力和数学推导能力. 那就开始了. 一个测试点一个测试点来. 首先注意到$b[i]=lim_{i=1}^{i<=n}(|=a[i])$ 1.$n,k<=4$ 直接爆搜.$O(2^{nk})$ 2.$n,k<=10$考虑状压dp. 设$dp[i][s]$为$a$的$i$项前缀或和. 那么有转移$dp[i+1][s|t]+=dp[i][s]…
正解是树剖. 首先Kru求最小生成树. 然后分别考虑树边和非树边的答案. 首先是非树边,非树边链接的两个点在MST上能够构成一条链. 这条链上最大的那条边-1就是这条边的答案. 为什么. 模拟Kru的过程.如果这条边在树上那一条之前的话.这条边的起点和终点两个集合必然还没有链接. 因为之前那树上那一条断了树链就断了. 那么这条边会成为树边. 然后是树边. 树边的答案就更加浅显一点了,我们的非树边会威胁树边的地位. 也就是说在非树边可能到达某一个树边前面的话,这条边就会成为树边. 那么这条非树便就…
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 2.找出通项公式,使得幂次变成二项式,进而将 [ l , r ] 的部分变成等比数列求和 3.模 998244353 下没有 \( \sqrt{5} \) ,所以“扩域”,就是把数表示成 \( a+b*\sqrt{5} \) :\( \sqrt{3} \) 也同理 注意扩域之后,不满足费马小定理,…