梅尔倒谱系数(MFCC) 梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC).依据人的听觉实验结果来分析语音的频谱, MFCC分析依据的听觉机理有两个 第一Mel scale:人耳感知的声音频率和声音的实际频率并不是线性的,有下面公式 $$f_{mel}=2595*\log _{10}(1+\frac{f}{700})$$ $$f = 700 (10^{f_{mel}/2595} - 1)$$ 式中$f_{mel}$是以梅尔(Mel)为…
今天一直在查找语音频谱之类的问题,今天正好有机会和大家共享一下. 语音信号处置之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处置>这门课,快考试了,所以也要了解了解相干的知识点.呵呵,平常没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.上面总结的是第四个知识点:MFCC.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. 在任意一个Aut…
语音信号处理之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第四个知识点:MFCC.因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正.谢谢. 在任意一个Automatic speech recognition 系统中,第一步…
最近学习音乐自动标注的过程中,看到了有关使用MFCC提取音频特征的内容,特地在网上找到资料,学习了一下相关内容.此笔记大部分内容摘自博文 http://blog.csdn.net/zouxy09/article/details/9156785 有小部分标注和批改时我自己加上的,以便今后查阅. 语音信号处理之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 在任意一个Automatic speech recognition…
Mel倒谱系数:MFCC Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient)的缩写是MFCC,Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系.Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征. 用录音设备录制一段模拟语音信号后,经由自定的取样频率(如8000 Hz.16000 Hz等)采样后转换(A/D)为数字语音信号.由于在时域(time domain)上语音信号的波形变化相当快速.不易观察,因此一般都…
引言 感知实验表明,人耳对于声音信号的感知聚焦于某一特定频率区域内,而非在整个频谱包络中. MFCC特征是应用非常广泛的语音特征. 语音的MFCC特征是基于人耳感知实验得到,将人耳当成特定的滤波器,只考虑某些特定频率成分.这些滤波器是在频域上不均匀分布的.更多的滤波器聚集于低频部分,高频部分的滤波器较少.采样率16Khz时,下图实例: MFCC计算及其意义 MFCC是一种倒谱特征,计算意义见下图: 其中,对于声音信号,一般会进行分帧后再提取特征,利用不同的窗函数实现. MFCC可以描述为:[Sp…
倒谱是表示一帧语音数据特征的一个序列.从periodogram estimate of the power spectrum计算得到的倒谱系数,可以用于基音追踪(pitch tracking),然而,从AR power spectral estimate计算得到的倒谱系数可以用于语音识别(现在已经被MFCCs所替代). One of the benefits of cepstrum and LPCCs over e.g. LPCs is that you can do cepstral mean…
最近在研究一些信号分析的事情,感兴趣如何将频谱信号反变换成时域信号.fft 与ifft可以顺畅的转变,但是这个是一帧信号,当时间较长的信号再一起是,通过反变换变成一帧一帧的时域信号,如何把他们拼接起来非常感兴趣,以后会做一些尝试,这里先留个档案. 1.将声音转化为声谱图(Spectrogram) 通过短时傅里叶变换. 2.将声谱图转换为声音 1. 通过ifft将一帧一帧的FFT信号(即1维的FFT信号数组X(F)(i)[ i=0 to length( X(f) ) ])变换成一小段一小段的时域信…
看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但对深入理解非常重要的细节问题本文秉承尽量直观的原则,尽量少用纯数学推导,而多用形象直观的物理意义.几何意义.举例作者的审美极度直男癌,本文的排版可能引起很多人不适,但本文的内容一定是亮点作者还没本科毕业,水平有限,读者如发现本文的错误.读不懂的地方,恳请提出全文原创,转载请标明出处 信号与系统是电子…
本文由云+社区发表 作者:腾讯智慧教育 概述 腾讯云智聆口语评测(英文版)(Smart Oral Evaluation-English,SOE-E)是腾讯云推出的语音评测产品,是基于英语口语类教育培训场景和腾讯云的语音处理技术,应用特征提取.声学模型和语音识别算法,为儿童和成人提供高准确度的英语口语发音评测.腾讯云智聆口语评测(英文版)支持单词和句子模式的评测,多维度反馈口语表现,可广泛应用于英语口语类教学应用中. 本 SDK 为智聆口语测评(英文版)的 Web 版本,封装了对智聆口语测评(英文…