[机器学习笔记]kNN进邻算法】的更多相关文章

K-近邻算法 一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}\] 一般…
K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否则预测出来的效果很差. (三)算法的优缺点: 优点:比较简单,易于实现,无需估计参数,无需训练. 缺点:计算量大,内存开销大,必须指定k值,k值若选取不当则分类精度不能保证. (四)适用场景:适用于小数据场景,几千~几万个样本. 实例: from sklearn.model_selection im…
一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: Lp(xi,xj)=(∑l=1n|x(l)i−x(l)j|p)1pLp(xi,xj)=(∑l=1n|xi(l)−xj(l)|p)1p 一般使用欧式距离:p = 2的个情况 Lp(xi,xj)…
py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个kNN.py保存了之后,需要重新导入这个kNN模块.报错:no module named kNN. 解决方法:1.将.py文件放到 site_packages 目录下            2.在调用文件中添加sys.path.append("模块文件目录"):import sys sys.…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊,伪基站,金融欺诈等领域. 在之前已经学习了异常检测算法One Class SVM和 isolation  Forest算法,博文如下: Python机器学习笔记:异常点检测算法--One…
knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato…
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.net/qq_37608890/article/details/78714664).     本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.k-近邻算法(k-Nearest Neighbor,KNN)概述 1.简…
转载请注明源出处:http://www.cnblogs.com/lighten/p/7593656.html 1.原理 本章介绍机器学习实战的第一个算法——k近邻算法(k Nearest Neighbor),也称为kNN.说到机器学习,一般都认为是很复杂,很高深的内容,但实际上其学习门栏并不算高,具备基本的高等数学知识(包括线性代数,概率论)就可以了,甚至一些算法高中生就能够理解了.kNN算法就是一个原理很好理解的算法,不需要多好的数学功底,这是一个分类算法(另一个大类是回归),属于监督学习的范…
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主要包含以下3种特征: 每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公升数 将文本记录到转换NumPy的解析程序 import operator from numpy import * from os import listdir def file2matrix(filenam…
机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学习.最近在看<Machine Learning IN ACTION>(作者:Peter Harrington)这本书,感觉非常不错.该书不是单纯的进行理论讲解,而是结合了许多小例子深度浅出地进行实战介绍.本博文作为学习笔记,用来记录书中重点内容和稍微地进行知识点的补充,也希望给看到的人带来一些帮助.…