均值为1的独立指数随机Y1,Y2,组合成的Y=Y1-(Y2-1)^2/2  在Y>0的条件下也是指数随机变量 另一个条件分布 13题有错误,应该是P{x<X<x+dx,y<Y<y+dy,  0<x^2+y^2<1} / P{0<x^2+y^2<1} 这样的形式,但是P{x<X<x+dx,y<Y<y+dy,  0<x^2+y^2<1}=(1/4)dxdy该怎么解释呢....NND…
相关博文目录: 第一次作业点评 第二次作业点评 第三次作业点评 说明:随机挑选20组点评,大家可以看看blog名字,github项目名字,看看那种是更好的,可以学习,每个小组都会反应出一些问题,希望能取长补短,改进自己的项目,所有贴出来的各种信息都可以自己做下横向对比,自(主动)学(别人好的地方)哈 第一组:取款机项目 组员 1121:负责功能代码编写 blog:取款机项目实验报告 code:joanyy/ATM 1125:负责单元测试编写 blog:结对项目:ATM code:tpp53185…
Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额. 在高并发场景下,提供了保证线程安全的对象.方法.比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好.线程安全的StringBuilder取代String.StringBuffer等等(Java在多线程这块实现是非常优秀和成熟的). Java…
请设计 一个密码生成器,要求随机生成4组10位密码(密码只能由字母和数字组成),每一组必须包含至少一个大写字母,每组密码不能相同,输出生成的密码. #include<stdio.h> #include<time.h> #include<stdlib.h> int getchar(); void test(int array[]); int main(){          int data[4][10];          for(int i = 0;i < 4;…
分析以下需求,并用代码实现 1.定义String getStr(char[] chs)方法 功能描述:获取长度为5的随机字符串,字符串由随机的4个大写英文字母和1个0-9之间(包含0和9)的整数组成 2.定义main方法,方法内完成: (1)定义长度为26,元素值为26个大写英文字母的数组chs (2)传递数组chs调用getStr(char[] chs)方法,获取返回值,并在控制台打印返回值 package com.itheima2; import java.util.Random; publ…
一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中…
var word = []; while (word.length < 7) { var tmp = data[parseInt(Math.random() * data.length)]; var isStop = false; for (var i = 0; i < word.length; i++) { if (word[i] == tmp) { isStop = true; break; } } if (!isStop) word[word.length] = tmp;}$scope.…
100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差. 为了解决这个问题,我们计算相关性来得到一个介于-1和1之间的值,就可以忽略它们各自不同的度量. 2.xgboost如何寻找最优特征?是有放回还是无放回的呢? 解析: xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆…
.6 统计作图 4.6.1 正整数的频率表 命令 正整数的频率表 函数 tabulate 格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些值的个数,第3列为这些值的频率. 例4-49 >> A=[1 2 2 5 6 3 8] A = 1 2 2 5 6 3 8 >> tabulate(A) Value Count Percent 1 1 14.29% 2 2 28.57% 3 1 14.29% 4 0 0.00% 5 1…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
并没有都读完,不过感觉还是有必要做一个笔记的,毕竟这只是随笔不是文章,所以可以有多少写多少,也算是工作总结了,最重要的是这个好在可以,完成所有有意义文档的检索,比起自己的word来说高级很多~~~. 以下部分内容 以下 全文翻译.不过我真的是一点儿一点儿在读... http://www.docin.com/p-817312337.html 一.简介: 段一:我们的拼接不需要手动校直. 段二:根据文献,图像自动对其和拼接有两套方式:1.直接的 2.基于特征的 直接的方法:1.提供非常准确的定位,2…
名称   mplayer − 电影播放器 mencoder − 电影编解码器 概要   mplayer [选项] [文件|URL|播放列表|−] mplayer [选项] 文件1 [指定选项] [文件2] [指定选项] mplayer [选项] {文件和选项组} [组指定选项] mplayer [dvd|dvdnav]://[标题|[开头标题]−末尾标题] [选项] mplayer vcd://轨迹[/设备] mplayer tv://[频道][/input_id] [选项] mplayer r…
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英国皇家学会会员:1763年4月7日逝世.贝叶斯曾是对概率论与统计的早期发展有重大影响的两位(贝叶斯和布莱斯·帕斯卡Blaise Pascal)人物之一. 贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数.统计推断.统计的估算等做出了贡献.…
朴素贝叶斯   Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英国皇家学会会员:1763年4月7日逝世.贝叶斯曾是对概率论与统计的早期发展有重大影响的两位(贝叶斯和布莱斯·帕斯卡Blaise Pascal)人物之一. 贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数.统计推断.统计的估…
朴素贝叶斯(Naive Bayesian)是一种基于贝叶斯定理和特征条件独立假设的分类方法,它是基于概率论的一种有监督学习方法,被广泛应用于自然语言处理,并在机器学习领域中占据了非常重要的地位.在之前做过的一个项目中,就用到了朴素贝叶斯分类器,将它应用于情感词的分析处理,并取得了不错的效果,本文我们就来介绍一下朴素贝叶斯分类的理论基础和它的实际使用. 在学习朴素贝叶斯分类以及正式开始情感词分析之前,我们首先需要了解一下贝叶斯定理的数学基础. 贝叶斯定理 贝叶斯定理是关于随机事件A和B的条件概率的…
基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语…
转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618218.html 参考书本: <2012.李航.统计学习方法.pdf> 书上首先介绍概率无向图模型,然后叙述条件随机场的定义和各种表示方法,那这里也按照这个顺序来. 概率无向图模型(马尔可夫随机场) 其实这个又叫做马尔可夫随机场(MRF),而这里需要讲解的条件随机场就和其有脱不开的关系. 模型定义 首先是无向图.那什么是无向图呢? 其实无向图就是指没有方向的图....我没有开玩笑,无…
frequentism-and-bayesianism-chs 频率主义和贝叶斯主义——一个实用的介绍 此notebook最初出现在博客Pythonic Perambulations的文章.BSD licensed. 这个系列共4个部分:中文版Part I Part II Part III Part IV,英文版Part I Part II Part III Part IV   科学工作者学习统计学的第一件事儿是要知道有两种不同的方法论:频率主义和贝叶斯主义.尽管这点很重要,但很多科学工作者从来…
原创博文,转载请注明出处 下面的论文是我的雷达处理的作业,拿来共享,不喜勿喷.由于公式编辑器的原因,无法复制公式,全部内容请点击. 基于多重信号分类算法的DOA估计 1引言 多重信号分类(MUSIC)算法是Schmit R O等人在 1979 年提出的.这一类算法的提出开创了空间谱估计算法研究的新时代,促进了特征结构类算法的兴起和发展,该算法已成为空间谱估计理论体系中的标志性算法.此算法提出之前的算法都是针对阵列接收数据协方差矩阵进行直接处理,而MUSIC算法的基本思想则是将任何阵列输出数据的协…
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常浅,基于 [1] 和 [5] 梳理.感觉 [1] 的讲解很适合完全不知道什么是CRF的人来入门.如果有需要深入理解CRF的需求的话,还是应该仔细读一下几个英文的tutorial,比如 [4] . (一)马尔可夫随机场简单回顾 概率图模型(Probabilistic graphical model,P…
1,Bayes定理 P(A,B)=P(A|B)P(B); P(A,B)=P(B|A)P(A); P(A|B)=P(B|A)P(A)/P(B);    贝叶斯定理变形 2,概率图模型 2.1  定义 概率图模型是一类用图的形式表示随机变量之间条件依赖关系的概率模型,是概率论与图论的结合.图中的节点表示随机变量,边表示随机变量之间的概率依赖关系.缺少边的节点表示满足条件独立假设. 2.2  随机变量的条件独立性 如果有P(A,B|C)=P(A|C)P(B|C),  则称在给定事件C的条件下,两个事件…
1 概率无向图模型1.1 模型定义1.2 因子分解2 条件随机场的定义2.2 条件随机场的参数化形式2.3 条件随机场的简化形式2.4 条件随机场的矩阵形式 3 条件随机场的概率计算问题 3.1 前向-后向算法3.2 概率计算3.3 期望值的计算4 条件随机场的学习算法4.1 改进的迭代尺度法IIS4.2 拟牛顿法5 条件随机场的预测算法 条件随机场conditional random field,给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.特点是假设输出随机变量构成马尔可夫…
今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map. 从动态图中,我们可以很明白的看出卷积实际上就是加权叠加. 同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度.如果我们需要输出的维度和输入的维度相等,这就需要填充(padding). 现在我们来看…
根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场. 条件随机场是一种判别式模型. 一.理解条件随机场 1.1 HMM简单介绍 HMM即隐马尔可夫模型,它是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而产生观测随机序列. 在这个过程中,不可观测的序列称为状态序…
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/xueyingxue001/article/details/51498968声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如…
A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合数$ans=C_{n+m-1}^{n-1}$ 所以要减去有一种花超过花的数量的情况,加上有两种花超过花的数量的情况,减去有三种花超过花的数量的情况... 最后$ans=C_{n+m-1}^{n-1}-\sum_{i=1}^{n}C_{n+m-a_{i}-2}^{n-1}+\sum_{i=1}^{n}…
目录 8.1 The structure of selection bias 8.2 Examples of selection bias 8.3 Selection bias and confounding 8.4 Selection bias and censoring 8.5 How to adjust for selection bias 8.6 Selection without bias Fine Point Selection bias in case-control studie…
1.前言: Naive Bayes(朴素贝叶斯)是一个简单的多类分类算法,该算法的前提是假设各特征之间是相互独立的.Naive Bayes 训练主要是为每一个特征,在给定的标签的条件下,计算每个特征在该标签的条件下的条件概率.最后用这个训练后的条件概率去预测. 由于我使用的Spark的版本是1.3.0.它所包含的Naive Bayes是 Multinomial NB.截至到我写该篇文章,最新的Spark1.6.0包含multinomial naive Bayes and Bernoulli na…
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in the field of pattern recognition is that of uncertainty. 可以看出概率论在模式识别显然是非常重要的一大块. 读其他书的时候在概率这方面就也很纠结过. 我们也还是通过一个例子来理解一下Probability Theory里面一些重要的概念. Ima…