均值归一化可以让算法运行得更好. 现在考虑这样一个情况:一个用户对所有的电影都没有评分,即上图所示 的Eve用户.现在我们要学习特征向量(假设n=2) 以及用户5的向量θ(5),因为用户Eve没有对任何电影打分,所以前面的一项为0,只有后面正则化的项,所以影响θ取值的只有后面的θ的正则化的项.所以要使它最小,即θ的取值为0.所以当我们预测用户5对所有电影的评分的时候,这时的评分都为0.所以我们会预测所有的电影的评分都为0.这样是毫无意义的,因为我们还是没有办法知道我们应该向用户5推荐什么电影(没…
推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在过去几年,我偶尔访问硅谷不同的技术公司,我常和工作在这儿致力于机器学习应用的人们聊天,我常问他们,最重要的机器学习的应用是什么,或者,你最想改进的机器学习应用有哪些.我最常听到的答案是推荐系统.现在,在硅谷有很多团体试图建立很好的推荐系统.因此,如果你考虑网站像Amazon,或Netflix或Eba…
16.1  问题形式化 16.2  基于内容的推荐系统 16.3  协同过滤 16.4  协同过滤算法 16.5  矢量化:低秩矩阵分解 16.6  推行工作上的细节:均值归一化 16.1  问题形式化…
16.1  问题形式化 16.2  基于内容的推荐系统 16.3  协同过滤 16.4  协同过滤算法 16.5  矢量化:低秩矩阵分解 16.6  推行工作上的细节:均值归一化 16.1  问题形式化 16.2  基于内容的推荐系统 16.3  协同过滤 16.4  协同过滤算法 16.5  矢量化:低秩矩阵分解 16.6  推行工作上的细节:均值归一化…
推荐系统很重要的原因:1>它是机器学习的一个重要应用2>对于机器学习来说,特征是非常重要的,对于一些问题,存在一些算法能自动帮我选择一些优良的features,推荐系统就可以帮助我们做这样的事情. 推荐系统的问题描述 使用电影评分系统,用户用1-5分给电影进行评分(允许评分在0-5之间,为了让在数学上的结果更漂亮一些,大多数网站的评分是1-5). 有5部电影,4位用户,如Alice对这5部电影的评分依次为5,5,?,0,0(?表示Alice没有看过这部电影)... 一些符号:nu表示用户的数量…
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可视化出来,但是它们是做为区分不同电影的特征 怎么来区分电影i与电影j是否相似呢?就是判断X(i)与X(j)之间的距离是否小来判断.这样在一个用户看了或者买了一部电影后,我们可以给他推荐相似的电影. 总结: 1>用向量化的计算来对所有的用户所有的电影进行评分计算 2>通过学习特征参数,如何找到相关的…
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征.通过推荐系统(recommender systems),将领略一小部分特征学习的思想. 假使有 5 部电影,3部爱情片.2部动作片.  4 个用户为其中的部分电影打了分.现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据. 下面引入一些标记:nu     …
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer Society) [论文作者]Yehuda Koren(Yahoo Research) , Robert Bell and Chris Volinsky( AT&T Labs—Research) [论文链接]Paper(8-pages // Double column) [Info] 此篇论文的作者是n…
[论文标题]Improving Implicit Recommender Systems with View Data(IJCAI 18) [论文作者]Jingtao Ding  , Guanghui Yu  , Xiangnan He  , Yuhan Quan ,Yong Li , Tat-Seng Chua , Depeng Jin  , Jiajie Yu  [论文链接]Paper(7-pages // Double column) [摘要] 大多数现有的推荐系统只利用主反馈数据,比如电…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…