【Luogu5349】幂(分治FFT)】的更多相关文章

[Luogu5349]幂(分治FFT) 题面 洛谷 题解 把多项式每一项拆出来考虑,于是等价于要求的只有\(\sum_{i=0}^\infty i^kr^i\). 令\(f(r)=\sum_{i=0}^\infty i^k r^i\),那么\(rf(r)=\sum_{i=0}^\infty r i^k r^i\). 这里默认\(a^k=0\),\(k=0\)的时候特殊处理一下就行了. 然后就可以得到: \[\begin{aligned} (1-r)f_k(r)&=\sum_{i=0}^\inft…
interlinkage: https://www.luogu.org/problemnew/show/P5349 description: solution: 设$g(x)=\sum_{n=0}^{∞}n^xr^n$ $rg(x)=\sum_{n=0}^{∞}n^xr^{n+1}=\sum_{n=1}^{∞}(n-1)^xr^n$ $g(x)=\sum_{n=1}^{∞}n^xr^n(x>0)$(注意$x>0$这个条件,$x=0$的时候这个不符合) $(1-r)g(x)=\sum_{n=1}…
Link Solution 有两种解法. 法1: 直接上分治FFT,也就是CDQ分治+FFT. 具体做法是先递归左半边,算出左半边答案之后,将左半边贡献到右半边,然后递归右半边. 分治是一个log的,每次暴力计算贡献是\(\text O(n^2)\)的,考虑用FFT优化计算贡献的过程.总复杂度变成\(\text O(n{log_n}^2)\). 需要注意:因为只算左半边对右半边的贡献,所以f数组右半边应置为0. 法2: 设 \(F(x)=\sum\limits_{i=0}^{\infty}f[i…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\(O(n\log^2 n)\).采用这种算法的条件是最终乘出来的式子长度是\(O(n)\)的. 也可以用多项式ln和exp做到\(O(n\log n)\). 用CDQ分治快速求一类多项式的算法 第一类 已知\(f(x)=\sum_{i=1}^xf(i)g(x-i)\),给定\(f(0)\).\(g(1…
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色的对数为\(x\). \(n\leq 10000,m\leq 200000\) 题解 我们考虑把这些小球分段,每段内所有小球颜色相同,但相邻两段的小球颜色可以相同. 设第\(i\)种颜色有\(b_i\)段,那么分\(j\)段的方案数是\(\frac{(\sum b_i)!}{\sum(b…
题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to 1\).且已知的这些简单路径之间没有公共的顶点,其 余的边的方向等概率随机. 你需要求出强连通分量(如果同时存在 \(a\) 到 \(b\), \(b\) 到 \(a\) 的有向路径,则 \(a\), \(b\) 属于同一个强联通分量) 的期望个数.如果最后答案是 \(\frac{A}{B}\),…