首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Tensorflow细节-P42张量的概念及使用
】的更多相关文章
Tensorflow细节-P42张量的概念及使用
1.运行以下代码 import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], name="b") result = a + b print result sess = tf.InteractiveSession () print(result.eval()) sess.close() 得到 其中,add与代码中的add有关,0表示第一个输出,图中的…
tensorflow笔记:流程,概念和简单代码注释
tensorflow是google在2015年开源的深度学习框架,可以很方便的检验算法效果.这两天看了看官方的tutorial,极客学院的文档,以及综合tensorflow的源码,把自己的心得整理了一下,作为自己的备忘录. tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflo…
TensorFlow 中的张量,图,会话
tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就是各种"数"的统称.而flow是流动的意思.所以TensorFlow的意思就是"数"的流动,可以说TensorFlow这个名字很形象.一般来说,编程模式有两种,一种是命令式的,一种是符号式的.命令式便于理解和调试,而符号式便于对复杂代码进行封装和抽象(就想我们把一些操作…
TensorFlow简易学习[1]:基本概念和操作示例
简介 TensorFlow是一个实现机器学习算法的接口,也是执行机器学习算法的框架.使用数据流式图规划计算流程,可以将计算映射到不同的硬件和操作系统平台. 主要概念 TensorFlow的计算可以表示为有向图(directed graph),或者计算图(computation graph),计算图描述了数据的就算流程,其中每个运算操作(operation)作为一个节点(node),节点与节点之间连接称为边(edge).在计算图变中流动(flow)的数据被称为张量(tensor),故称Tensor…
8 tensorflow修改tensor张量矩阵的某一列
1.tensorflow的数据流图限制了它的tensor是只读属性,因此对于一个Tensor(张量)形式的矩阵,想修改特定位置的元素,比较困难. 2.我要做的是将所有的操作定义为符号形式的操作.也就是抽象概念的数据流图.当用feed_dict传入具体值以后,就能用sess.run读出具体值. 一.相关内容 https://blog.csdn.net/Cerisier/article/details/79584851 Tensorflow小技巧整理:修改张量特定元素的值 二.修改矩阵的某一列 代码…
TensorFlow计算图,张量,会话基础知识
import tensorflow as tf get_default_graph = "tensorflow_get_default_graph.png" # 当前默认的计算图 tf.get_default_graph print(tf.get_default_graph()) # 自定义计算图 # tf.Graph # g1中定义名字为v的变量 初始化为0 g1 = tf.Graph() with g1.as_default(): v = tf.get_variable("…
Tensorflow学习笔记——张量、图、常量、变量(一)
1 张量和图 TensorFlow是一种采用数据流图(data flow graphs),用于数值计算的开源软件库.其中 Tensor 代表传递的数据为张量(多维数组),Flow 代表使用计算图进行运算.数据流图用「结点」(nodes)和「边」(edges)组成的有向图来描述数学运算.「结点」一般用来表示施加的数学操作,但也可以表示数据输入的起点和输出的终点,或者是读取/写入持久变量(persistent variable)的终点.边表示结点之间的输入/输出关系.这些数据边可以传送维度可动态调整…
Tensorflow细节-P199-数据集
数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 dataset = tf.data.Dataset.from_tensor_slices(input_data) # 这是构建Dataset内存中的数据 # 定义迭代器. iterator = dataset.make_one_shot_iterator() # get_next() 返回代表一个输入数…
Tensorflow细节-P160-迁移学习
这是一个完整的程序,值得保存 1.对图片进行预处理并保存 import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该 # 类别的所有图片. INPUT_DATA = './dataset/flower_photos' # 输出文件地址.我们将整理后的图片…
(第一章第四部分)TensorFlow框架之张量
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html (三)TensorFlow框架之会话:https://www.cnblogs.com/kongweisi/p/11038550.html 本文概述: 知道常见的TensorFlow创建张量…