大意: 两人轮流操作一个长$n$, 只含前$k$种小写字母的串, 每次操作删除一个字符或者将整个串重排, 每次操作后得到的串不能和之前出现过的串相同, 求多少种串能使先手必胜. 找下规律发现$n$为奇数必胜, 否则假设$a_i$为字符$i$出现次数, 如果$\frac{n!}{a_1!a_2!...a_k!}$为奇数则必败 $n!$中$2$的幂次为n-__builtin_popcount(n) 所以必败就等价于$a_1+...+a_n=a_1|...|a_n$ 设$f_{i,j}$表示前$i$个…
题目:http://codeforces.com/contest/914/problem/G 第一个括号可以子集卷积:第三个括号可以用 FWT 异或卷积:这样算出选两个数组成 x 的方案数:三个部分的方案数分别乘上 f[ x ] 再一起与卷积即可. 注意子集卷积的时候不要改 tp[ i ][ s ] ,因为要的是恰好两个数拼起来,没有改过的(但是做过 FMT 的) tp[ i ][ s ] 存的是初值,表示选 1 个数的方案数. 所以如果可以选任意多个数,就可以像背包一样, tp[ j ][ s…
题目:http://codeforces.com/contest/914/problem/G 其实就是把各种都用子集卷积和FWT卷起来算即可: 注意乘 Fibonacci 数组的位置: 子集卷积时不能一边做一边更新卷积的数组! 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int rd() { ,f=; cha…
传送门: http://codeforces.com/problemset/problem/838/C 题解: 如果一个字符串的排列数是偶数,则先手必胜,因为如果下一层有后手必赢态,直接转移过去,不然,就一直耗着,因为是偶数,所以会让后手进入下一层,则后手必输. 排列数是偶数,打表发现\(|s|\)是奇数时,先手必赢,否则后手必赢,接下来尝试归纳这个结论. |s|<=2时显然成立. 对于\(|S|\)奇数,排列个数是奇数时,设a[i]表示第i个字符出现次数,排列个数=\(\binom{|S|}{…
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \oplus s_b\)用xor卷积算出来,把斐波那契数代进去,然后将三个数组and卷积,最后取\(2^i (i \in Z)\)的位置的答案的和 #include<bits/stdc++.h> //this code is written by Itst using namespace std; int…
题目:http://uoj.ac/problem/348 参考:https://www.cnblogs.com/NaVi-Awson/p/9242645.html#%E5%AD%90%E9%9B%86%E5%8D%B7%E7%A7%AF FMT就是快速莫比乌斯变换/反演,解决或卷积的问题,和 FWT 时间复杂度一样. FWT定义了 \( a'[i]=\sum\limits_{j|i=i}a[j] \) ,利用倍增算出 a'[ ] 作为点值,相乘之后再算回去: FMT 也定义了这样的东西,但计算…
题解: 然后就是接下来如何fwt 也就是如何处理bit(x) - bit(y) = bit(k)这个条件. 其实就是子集卷积. 把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式. 这里设两个新的数组 A[bit(y)][y], B[bit(x)][x],代表拆出来的相应数组 然后对这两个数组做fwt,得到其点值表示,然后直接在外层枚举x和y的大小然后做卷积即可. 这样说可能很抽象,其实贴出代码就很清楚了 #include <iostream> #include <vec…
题目:http://uoj.ac/problem/348 一开始可以 3^n 子集DP,枚举一种状态的最后一个集合是什么来转移: 设 \( f[s] \) 表示 \( s \) 集合内的点都划分好了,\( g[s] = \sum\limits_{i \in s} w[i] \) 那么 \( f[s] = \sum\limits_{d \subseteq s} \frac{f[s-d] * g[d]}{g[s]} \) 注意判断一个集合是否合法,不仅要判断每个点的度数,还要判断整个集合是否连通:…
前言:yyb神仙的博客 FWT 基本思路:将多项式变成点值表达,点值相乘之后再逆变换回来得到特定形式的卷积: 多项式的次数界都为\(2^n\)的形式,\(A_0\)定义为前一半多项式(下标二进制第一位为\(0\)),\(A_1\)同理定义: \((A,B)\)表示多项式\(A\)和\(B\)的直接拼接,FWT的结果都是一个点值表达,相乘表示点值相乘: 下面这些变换都满足线性,记\(n\)为二进制位数,复杂度:\(O(n\times 2^n)\): or卷积 形式: \[ (A|B)_{k} =…
传送门 应该都会判欧拉回路吧(雾 考虑状压DP:设\(W_i\)表示集合\(i\)的点的权值和,\(route_i\)表示点集\(i\)的导出子图中是否存在欧拉回路,\(f_i\)表示前若干个城市包含了集合\(i\)的所有方案满意度的和,转移枚举最后一个放入的城市集合\(x\),有\(f_i = \frac{\sum\limits_{x \subset i} [route_x] W_x \times f_{i \oplus x}}{W_i}\). 可以注意到两个不交的状态\(i,j\)可以转移到…