IDEA Spark Streaming 操作(套接字流)】的更多相关文章

import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} object DStream_socket { def main(args: Array[String]): Unit = { val Conf=new SparkConf().setAppName("套接字流").setMaster("local[2]") val ss=))…
import java.io.PrintWriter import java.net.ServerSocket import scala.io.Source object DStream_makeSocket { def main(args: Array[String]): Unit = { val file="/home/soyo/桌面/spark编程测试数据/1.txt" val lines=Source.fromFile(file).getLines().toList lines…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.{Seconds, StreamingContext} import scala.collection.mutable object DStream_RDDqueue { def main(args: Array[String]): Unit = { val conf=new SparkConf()…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源不断地接入流数据,为了在演示过程中更接近真实环境将定义流数据模拟器.该模拟器主要功能:通过Socket方式监听指定的端口号,当外部程序通过该端口连接并请求数据时,模拟器将定时将指定的文件数据随机获取发送给外部程序. 1.1.2 模拟器代码 import java.io.{PrintWriter} import…
本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Receiver存储数据,C级别的,Receiver是个抽象因为他有好多的Receiver 2. ReceiverSupervisor 是控制器,因为Receiver启动是靠ReceiverSuperior启动的,及接收到的数据交给ReceiverSuperior存储数据的 3. Driver会获得源数据,…
本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD有很大概率的,如何进行处理将影响其运行的效率.资源的有效使用. Spark Streaming会不断的接收数据,在不清楚接收的数据处理到什么状态,如果你强制停止掉的话,会涉及到数据不完整操作或者一致性相关问题. 一. Spark Streaming中的空RDD处理 : ForEachRDD是产生Ds…
SocketAsyncEventArgs是一个套接字操作的类,主要作用是实现socket消息的异步接收和发送,跟Socket的BeginSend和 BeginReceive方法异步处理没有多大区别,它的优势在于完成端口的实现来处理大数据的并发情况,由于本人学习不久,对千万级的 数据访问还没有多大体会,这里的简单实现作为一个学习的笔记,请酌情参考,如有错误,请及时指正. 先说说SockeAsyncEventArgs类的操作方法,以下是摘自MSDN的内容(MSDN的SockeAsyncEventAr…
本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收…