图论之最短路算法之SPFA算法】的更多相关文章

Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的没有环路的路,也只不过是V个点E-1条边构成的,所以松弛E-1次一定能得到最短路.因此这个算法相比 Dijkstra 首先其是对边进行增广,其次它能检测出负环的存在(若负环存在,那么最短路是取不到的,因为可以一直绕着这个负环将最小路径值不断缩小),这个弥补了 Dijkstra 的不足,但是其算法跑的…
PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它的一些优化(包括已死的SPFA) Bellman-Ford算法 其实,和Floyd算法类似,Bellman-Ford算法同样是基于DP思想的,而且也是在不断的进行松弛操作(可以理解为「不断放宽对结果的要求」,比如在Floyd中就体现为不断第一维\(k\),具体解释在这里) 既然是单源最短路径问题,我…
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点E条边. 该算法主要流程是: 初始化.到起点s的距离distTo[s]设置为0,其余顶点的dist[]设置为正无穷: 以任意次序放松图中的所有E条边,重复V轮: V轮放松结束后,判断是否存在负权回路.如果存在,最短路径没有意义. 根据流程可以给出代码,如下 package Chap7; import…
说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellman-Ford算法 思维 一张有向图,有n个点,m条边,用dis[]数组保存源点到各点的最短距离,可以通过对边进行n-1次的遍历,当其满足dis[v]>dis[u]+w的时候,就对其进行松弛更新,重复n-1次以后就能得到答案,如果n-1次以后还能继续更新,则可以判断图中出现了负权环,思路非常简短.…
SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径(弱化版)来做讲解吧! 如题: 首先,我们先来定义一波变量吧: struct node{ int v,w; node (){ } node (int _v,int _w){ v=_v; w=_w; }//构造函数 }; queue<int>qu;//必备队列 const int inf=0x3f3…
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径. 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2,可以处理负边,但无法处理带负环的图(负环和负边不是一个概念). SPFA的实现甚至比Dijkstra或者Bellman_Ford还要简单. SPFA算法过程: 我们记源点为S,由源点到达点i的“当前最短路径”为D[i…
今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路.但是SPFA算法的时间复杂度是O(kE),k是常数,平均值为2,E是边数.我们可以看到SPFA算法的时间复杂度远远低于Bellman-Ford算法,因此常常选择此算法而不是Bellman算法(虽然其复杂度没有被严格的数学证明). 简单的说SPFA是将Bellman-Ford算法结合了队列的实现,从而减少了很多冗余…
在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE),再加些玄学优化一般就是正解了,100分做法) SPFA算法  ( 个人是不建议学习的,在NOIP提高组中出题人是故卡SPFA,它的复杂度是不确定的,它是基于ballman-Fold算法(O(N*E))的队列优化版) 这个应该都是比较简单的,直接上代码吧 dijkstra #include<ios…
在Bellman-Ford算法中 我们可以看到大量的优化空间:如果一个点的最短路径已经确定了,那么它就不会再改变,因此不需要再处理.换句话说:我们每次只对最短路径改变了的顶点的所有出边进行操作 使用一个队列就可以实现这个“轮流处理“的效果: 具体操作:选取一个顶点,入队,枚举它的出边,进行松弛,把松弛后最短距离改变的点入队,然后将最初选取的顶点(队首)出队,对新的队首顶点重复上述操作. 注意:队列中同一时刻不能有两个相同的顶点,因此如果要入队的顶点已经在队列中就不再将其入队,这就需要一个标记数组…
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7252   Accepted: 2581 Description Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from…