two important types of artificial neuron :the perceptron and the sigmoid neuron Perceptrons 感知机的输入个数不限,每个输入的取值都是二元的(0或1,这点不确定,后续确认下),输出是0或1. Sigmoid neuron Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weight…
The human visual system is one of the wonders of the world. Consider the following sequence of handwritten digits: Most people effortlessly recognize those digits as 504192. That ease is deceptive. In each hemisphere of our brain, humans have a prima…
Chapter1 使用神经网络辨识手写数字 人类的视觉系统是自然界的一大奇迹.试看如下的手写数列: 绝大多数人都能毫不费劲地认出这些数字是504192,而这会让人产生识别数字非常简单的错觉.人类大脑的每个半球都有初级视觉皮层,其中一个可以被记作V1,包含有1亿4千万的神经元以及它们之间数以百亿计的相互连接.何况人类的视觉系统不仅只有V1,而还包括其他所有的初级视觉皮层:V2,V3,V4和V5,逐步负责着不同复杂程度的图像处理.我们的大脑里有一台超级计算机,经过数亿年的进化,能够极好地适应理解视觉…
Using convolutional neural nets to detect facial keypoints tutorial   this blog from: http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/   December 17, 2014 | categories: Python, Deep Learning…
第七部分 让 学习率 和 学习潜能 随时间的变化 光训练就花了一个小时的时间.等结果并非一个令人心情愉快的事情.这一部分.我们将讨论将两个技巧结合让网络训练的更快! 直觉上的解决的方法是,開始训练时取一个较高的学习率,随着迭代次数的增多不停的减小这个值.这是有道理的,由于開始的时候我们距离全局最长处很远.我们想要朝着最长处的方向大步前进:然而里最长处越近,我们就前进的越慎重,以免一步跨过去.举个样例说就是你乘火车回家,但你进家门的时候肯定是走进去.不能让火车开进去. 从讨论深度学习中初始化和学习…
Machine Learning, Homework 9, Neural NetsApril 15, 2019ContentsBoston Housing with a Single Layer and R package nnet 1Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Digit Recognition wit…
One of the most striking facts about neural networks is that they can compute any function at all. That is, suppose someone hands you some complicated, wiggly function, f(x)f(x): No matter what the function, there is guaranteed to be a neural network…
http://neuralnetworksanddeeplearning.com/chap4.html In essence, we're using our single-layer neural networks to build a lookup table for the function. And we'll be able to build on this idea to provide a general proof of universality.…
要求:实现任意层数的NN. 每一层结构包含: 1.前向传播和反向传播函数:2.每一层计算的相关数值 cell 1 依旧是显示的初始设置 # As usual, a bit of setup import time import numpy as np import matplotlib.pyplot as plt from cs231n.classifiers.fc_net import * from cs231n.data_utils import get_CIFAR10_data from…
neural network and deep learning 这本书看了陆陆续续看了好几遍了,但每次都会有不一样的收获. DL领域的paper日新月异.每天都会有非常多新的idea出来,我想.深入阅读经典书籍和paper,一定能够从中发现remian open的问题.从而有不一样的视角. PS:blog主要摘取书中重要内容简述. 摘要部分 Neural networks, a beautiful biologically-inspired programming paradigm which…