给定数据集data,数据集对应的标签label index = [i for i in range(len(data))] random.shuffle(index) data = data[index] label = label[index] (1)首先,获得数据集的所有index,其实就是0,1,2,....,num-1(这里的num是数据集中含有的examples的个数,注意,python的索引是从0开始的,所以,第一个元素索引为0,最后一个元素索引为num-1) [数据集中函数的样本个…
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 #!/usr/bin/env python3 # coding=utf-8 import math import sys import os import numpy…
本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html 本文作者:Francois Chollet 按照官方的文章实现过程有一些坑,彻底理解代码细节实现,理解keras的api具体使用方法 也有很多人翻译这篇文章,但是有些没有具体实现细节 另外keres开发者自己有本书的jupyter:Companion Jupyter notebooks for th…
在进行相关平台的练习过程中,由于要自己导入数据集,而导入方法在市面上五花八门,各种库都可以应用,在这个过程中我准备尝试torchvision的库dataset torchvision.datasets.ImageFolder 简单应用起来非常简单,用torchvision.datasets.ImageFolder实现图片的导入,在随后训练过程中用Datalodar处理后可按批次取出训练集 class ImageFolder(root, transform=None, target_transfo…
问题: 当使用Keras运行示例程序mnist_cnn时,出现如下错误: 'keras.backend' has no attribute 'image_data_format' 程序路径https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py 使用的python conda环境是udacity自动驾驶课程的carnd-term1 故障程序段: if K.image_data_format() == 'channels…
SVM全称是Support Vector Machine,即支持向量机,是一种监督式学习算法.它主要应用于分类问题,通过改进代码也可以用作回归.所谓支持向量就是距离分隔面最近的向量.支持向量机就是要确保这些支持向量距离超平面尽可能的远以保证模型具有相当的泛化能力. 当训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机:当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机:当训练数据线性不可分时,通过使用核技巧,将低维度的非线性问题转化为高…
先吐槽一下这个基于theano的keras有多难装,反正我是在windows下折腾到不行(需要64bit,vs c++2015),所以自己装了一个双系统.这才感到linux系统的强大之初,难怪大公司都是用这个做开发,妹的,谁用谁知道啊!!!!  先来介绍一下这个框架:我们都知道深度的神经网络,python一开始有theano这个框架用来写神经网络,不过后来我们发现keras这个比theano更加容易构建,很适合初学者.×..×  以下是对应的英文网站:http://keras.io/#insta…
这个是我使用的车牌识别开源项目的地址:https://github.com/zeusees/HyperLPR Python 依赖 Anaconda for Python 3.x on Win64 Keras (>2.0.0) Theano(>0.9) or Tensorflow(>1.1.x) Numpy (>1.10) Scipy (0.19.1) OpenCV(>3.0) Scikit-image (0.13.0) PIL 准备工作:安装以下依赖包 pip install…
import tensorflow as tf import numpy as np ''' 初始化运算图,它包含了上节提到的各个运算单元,它将为W,x,b,h构造运算部件,并将它们连接 起来 ''' graph = tf.Graph() #一次tensorflow代码的运行都要初始化一个session session = tf.InteractiveSession(graph=graph) ''' 我们定义三种变量,一种叫placeholder,它对应输入变量,也就是上节计算图所示的圆圈部分,…
!pip install gym import random import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense, Dropout, Activation from keras.models import Sequential from keras.optimizers import Adam from keras import backend as K from collection…