这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存.以这种方式,可以得到一个能反映流形的几何结构的解. 步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3-n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关.如果xi,xj相距较近,我们就连接vi,vj.也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数. 步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为…
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT HOG等等. LBP就是一种局部信息,它反应的内容是每个像素与周围像素的关系.举最基本的LBP为例,它反应了像素与周围8个点灰度值的关系,如下图所示: 如上图所示,中间像素的灰度值为54,我们如下定义:当周围像素的灰度值大于等于中间像素值时,则LBP的一位值为1,否则为零.由这个九宫格,我们就得到…
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构. 2 推导 拉普拉斯特征映射通过构建邻接矩阵为 $W$ (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征.其主要思想是,如果两个数据 实例 $i$…
为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果.该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特征图.从实验来看,对比其它模型,GhostNet的压缩效果最好,且准确率保持也很不错,论文思想十分值得参考与学习   来源:晓飞的算法工程笔记 公众号 论文: GhostNet: More Features from Cheap Operations 论文地址:https://arxiv.org/a…
近期研究了一下以图搜图这个炫酷的东西.百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下.当然,不是很深入.深入的话,得运用到深度学习这货.Python深度学习当然不在话下. 这个功能最核心的东西就是怎么让电脑识别图片. 这个问题也是困扰了我,在偶然的机会,看到哈希感知算法.这个分两种,一种是基本的均值哈希感知算法(dHash),一种是余弦变换哈希感知算法(pHash).dHash是我自己命名的,为了和pHash区分.这里两种方法,我都用Python实现了^_^ 哈希感知算法基本原理如下: 1.…
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么. 自定义网络特征可视化 代码: # coding: utf-8 from keras.models import Model import cv2 import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers.convolutional import Convolution2D…
训练好的模型,想要输入中间层的特征图,有两种方式: 1. 通过model.get_layer的方式.创建新的模型,输出为你要的层的名字. 创建模型,debug状态可以看到模型中,base_model/layers,图中红框即为layer名字,根据你想输出的层填写.最后网络feed数据后,输出的就是中间层结果. 2. 通过建立Keras的函数. from keras import backend as K from keras.models import load_model from matpl…
转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前的文章也提到过了,卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling). 其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作. 而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x…
特征图(或者叫地标图,landmark maps)利用参数化特征(如点和线)的全局位置来表示环境.如图1所示,机器人的外部环境被一些列参数化的特征,即二维坐标点表示.这些静态的地标点被观测器(装有传感器的机器人)利用多目标跟踪的方法跟踪,从而估计机器人的运动. Fig.1 Feature maps. 机器人的定位是通过建立传感器观测特征和图map中特征之间的关系来确定的.预测特征的位置和量测特征位置之间的差别被用来计算机器人的位姿.这种方式,类似于多目标跟踪问题,但是不想传统的多目标跟踪问题,这…
1.加载VGG19获取图片特征图 # coding = utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os import scipy.io import scipy.misc def _conv_layer(input,weights,bias): conv = tf.nn.conv2d(input,tf.constant(weights),strides=(1,1,…