dht 分布式hash 一致性hash区别】的更多相关文章

今天阅读了一下大型网络技术架构这本苏中的分布式缓存一致性hash算法这一节,针对大型分布式系统来说,缓存在该系统中必不可少,分布式集群环境中,会出现添加缓存节点的需求,这样需要保障缓存服务器中对缓存的命中率,就有很大的要求了: 采用普通方法,将key值进行取hash后对分布式缓存机器数目进行取余,以集群3台分布式缓存为例子: 对于数据进行取hash值然后对3其进行取余,余数为0则进入node 0,余数位1则进入node1,余数位2则进入node2. 如果增加一个节点则对4进行取余,则会将node…
先有一致性hash :一致性哈希,似乎最早提出是在分布式缓存里面的,让节点震荡的时候,影响最小.不过现在已经应用在分布式存储和p2p系统里面. dht 是p2p领域的概念,内有三大概念是由keyspace(key 空间).keyspace partition(key 空间划分).overlay network(覆盖网)组成.keyspace 很好理解,是所有定长字符串的空间.keyspace partition 方案将keyspace 上不同区域划分到不同的参与节点上.overlay netwo…
当服务器不多,并且不考虑扩容的时候,可直接使用简单的路由算法,用服务器数除缓存数据KEY的hash值,余数作为服务器下标即可. 但是当业务发展,网站缓存服务需要扩容时就会出现问题,比如3台缓存服务器要扩容到4台,就会导致75%的数据无法命中,当100台服务器中增加一台,不命中率会到达99%(n/(n+1)),这显然是不能接受的. 在设计分布式缓存集群的时候,需要考虑集群的伸缩性,也就是当向集群中增加服务器的时候,要尽量减小对集群的影响,而一致性hash算法就是用来解决集群伸缩性. 一致性hash…
场景 如果要设计一套KV存储的系统,用户PUT一个key和value,存储到系统中,并且提供用户根据key来GET对应的value.要求随着用户规模变大,系统是可以水平扩展的,主要要解决以下几个问题. 系统是一个集群,包含很多节点,如何解决用户数据的存储问题?保证用户的数据尽可能平均分散到各个节点上. 如果用户量增长,需要对集群进行扩容,扩容完成后如何解决数据重新分布?保证不会出现热点数据节点. 方案一:取模hash 要设计上面的系统,最简单的方案就是取模hash.基本的原理就是:假设集群一共有…
分布式算法 参考: https://blog.51cto.com/alanwu/1431397 https://blog.csdn.net/kojhliang/article/details/81205516 元数据问题 在分布式存储中面临的一个重要问题是如何在多个存储节点上分布数据.了解GFS之类文件系统的同学都知道可以采用元数据服务器(MS)的方式决定数据块在存储节点上的分布映射.采用元数据服务器方式可以很好的将数据和元数据分离,访问文件系统命令空间的时候,可以直接从元数据服务器上获取文件的…
大家好,我是小富~ 个人公众号:程序员内点事,欢迎学习交流 这两天看到技术群里,有小伙伴在讨论一致性hash算法的问题,正愁没啥写的题目就来了,那就简单介绍下它的原理.下边我们以分布式缓存中经典场景举例,面试中也是经常提及的一些话题,看看什么是一致性hash算法以及它有那些过人之处. 构建场景 假如我们有三台缓存服务器编号node0.node1.node2,现在有3000万个key,希望可以将这些个key均匀的缓存到三台机器上,你会想到什么方案呢? 我们可能首先想到的方案,是取模算法hash(k…
一致性hash 前言 说出来大家可能不相信,我昨天做梦梦到自己在面试,然后面试官问了我这个问题哈哈~然后我就打算按照自己的理解写一写.如果有写的不对的欢迎大家指正! 直接开始 普通hash算法 普通hash算法就是把存储的key取hash然后再对节点数取模之后判断key所在节点的位置, 如上图所示,假设现在有key1,key2,key3,key4四个key,通过上面说的方法均匀分布在了这4个节点上面.看上去非常nice~ 但是如果现在我们集群需要扩容,增加一台机器会发生啥? 可以看到,由于现在增…
一致性hash和solr千万级数据分布式搜索引擎中的应用 互联网创业中大部分人都是草根创业,这个时候没有强劲的服务器,也没有钱去买很昂贵的海量数据库.在这样严峻的条件下,一批又一批的创业者从创业中获得成功,这个和当前的开源技术.海量数据架构有着必不可分的关系.比如我们使用mysql.nginx等开源软件,通过架构和低成本服务器也可以搭建千万级用户访问量的系统.新浪微博.淘宝网.腾讯等大型互联网公司都使用了很多开源免费系统搭建了他们的平台.所以,用什么没关系,只要能够在合理的情况下采用合理的解决方…
由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式. Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取.我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希.因为Memcached的哈希策…
互联网创业中大部分人都是草根创业,这个时候没有强劲的服务器,也没有钱去买很昂贵的海量数据库.在这样严峻的条件下,一批又一批的创业者从创业中 获得成功,这个和当前的开源技术.海量数据架构有着必不可分的关系.比如我们使用mysql.nginx等开源软件,通过架构和低成本服务器也可以搭建千 万级用户访问量的系统.新浪微博.淘宝网.腾讯等大型互联网公司都使用了很多开源免费系统搭建了他们的平台.所以,用什么没关系,只要能够在合理的情况下 采用合理的解决方案. 那怎么搭建一个好的系统架构呢?这个话题太大,这…