RDD.Action触发SparkContext.run,这里举最简单的例子rdd.count() /** * Return the number of elements in the RDD. */ def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum Spark Action会触发SparkContext类的runJob,而runJob会继续调用DAGSchduler类的runJob DAGSchduler类的run…
Spark下生成2000w测试数据(每条记录150列) 使用spark生成大量数据过程中遇到问题,如果sc.parallelize(fukeData, 64);的记录数特别大比如500w,1000w时,会特别慢,而且会抛出内存溢出over head错误.解决方案,一次生成的数据量不高于100w,多次调用,这样下来一共生成2000w耗时十几分钟. 如果环境允许你可以在本地生成测试数据,然后上传到hdfs供spark测试. import java.io.BufferedWriter; import…
spark 资源调度包 Stage(阶段) 类解析 Stage 概念 Spark 任务会根据 RDD 之间的依赖关系, 形成一个DAG有向无环图, DAG会被提交给DAGScheduler, DAGSchedular 会把DAG划分为相互依赖的多个stage. 而划分stage的依据就是RDD之间的宽窄依赖. 每个stage包含一个或多个task任务.而这些task以taskSet的形式提交给TaskScheduler运行. stage是由一组并行的task组成的. stage计算模式 pipe…
1. spark 如何执行程序? 首先看下spark 的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点. 2. worker 节点: 常驻worker进程,负责管理executor 并与master节点通信. dirvier:官方解释为: The process running the main() function of the application and creating the SparkContext.即理解为用户自己编写的应用…
本文为SparkStreaming源码剖析的第三篇,主要分析SparkStreaming启动过程. 在调用StreamingContext.start方法后,进入JobScheduler.start方法中,各子元素start方法的调用顺序如下: private var eventLoop : EventLoop[JobSchedulerEvent] = null val listenerBus = new StreamingListenerBus() private val jobGenerat…
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RDD的所有分区,这是shuffle类操作 Stage: 一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage.Stage的划分,简单的说是以shuffle和result这两种类型来划分.在Spark中有两类task,一类是shuffleMap…
1.1 例子,美国 1880 - 2014 年新生婴儿数据统计 目标:用美国 1880 - 2014 年新生婴儿的数据来做做简单的统计 数据源:https://catalog.data.gov 数据格式: 每年的新生婴儿数据在一个文件里面 每个文件的每一条数据格式:姓名,性别,新生人数 1.2 运行流程概览 上面的 22 行代码,就已经把构建一个 spark app 的三大步骤完成了,amazing, right? 今天我们主要讲 spark 的运行逻辑,所以我们就以核心的 11 - 16 ,这…
Spark Streaming是一个新的实时计算的利器,而且还在快速的发展.它将输入流切分成一个个的DStream转换为RDD,从而可以使用Spark来处理.它直接支持多种数据源:Kafka, Flume, Twitter, ZeroMQ , TCP sockets等,有一些可以操作的函数:map, reduce, join, window等. 本文将Spark Streaming和Flume-NG进行对接,然后以官方内置的JavaFlumeEventCount作参考,稍作修改然后放到集群上去运…
MetricsSystem信息收集过程 参考: <Apache Spark源码走读之21 -- WEB UI和Metrics初始化及数据更新过程分析> <Spark Metrics配置详解> <Spark Structrued Streaming源码分析--(四)ProgressReporter每个流处理进度计算.StreamQueryManager管理运行的流> <Spark Core源码精读计划#13:度量系统MetricsSystem的建立> <…
Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A stage is a set of independent tasks all computing the same function that need to run as part * of a Spark job, where all the tasks have the same shuffle…