对fgets末尾'\0'的处理】的更多相关文章

之所以要对fgets自动添加的字符进行处理的原因之一是:当你想比较输入的字符时,你会发现输入的字符和源码用来进行对比的字符一模一样,但是使用strcmp比较时就是不一样,原因就是fgets对输入字符添加了一个字–符造成的. 怎么造成的呢? strcmp会比较这个字符串所有的内容,长度都不一样,肯定不同. 如何解决? 把输入字符长度"截去"一个的就行 #include "iostream" #include "stdio.h" #include "stdio…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
问题一解法:     我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个10呢? 其实我们只要算里面有多少个5就可以了?     因为在这些分解后的因子中,能产生10的可只有5和2相乘了,由于2的个数是大于5的个数的,因此 我们只要算5的个数就可以了.那么这个题目就是算这些从1到N的数字分解成因子后,这些因子里面 5的个数.   Python代码 def factori…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1090 题意:给你四个数 n, r, p, q 求C(n, r) * p^q的结果中末尾0的个数;(1<=n, r, p, q <= 10^6, r ≤ n) 要求末尾0的个数,一定和2和5有关,例如num1 * num2结果中末尾0的个数可以表示成min(num1中2的个数+num2中2的个数, num1中5的个数+num2中5的个数); 对于C(n, r)中0的2的个数可以写成f…
http://www.matrix67.com/blog/archives/3985 神秘常量复出!用0x077CB531计算末尾0的个数 大家或许还记得 Quake III 里面的一段有如天书般的代码,其中用到的神秘常量 0x5F3759DF 究竟是怎么一回事,着实让不少人伤透了脑筋.今天,我见到了一段同样诡异的代码.下面这个位运算小技巧可以迅速给出一个数的二进制表达中末尾有多少个 0 .比如, 123 456 的二进制表达是 1 11100010 01000000 ,因此这个程序给出的结果就…
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相乘能得到10,N!= K * 10M其中K不能被10整除,则N!末尾有M个0. 对N!进行质因数分解: N!=2X*3Y*5Z…,因为10=2*5,所以M与2和5的个数即X.Z有关.每一对2和5都可以得到10,故M=min(X,Z).因为能被2整除的数出现的频率要比能被5整除的数出现的频率高,所以M…
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正整数N!,都可以化为N!= (2^X)*(3^Y)* (5^Z)......的形式,要求得末尾0的个数只需求得min(X, Z)即可,由于是求N!,则X >= Z; 即公约数5出现的频率小于等于2出现的频率,即Z=min(X, Z),即出现0的个数等于公约数5出现的次数: 方法一: #include…
题目链接:http://codeforces.com/problemset/problem/2/B 题目大意: 给你一个nxn的矩形,找到一条从左上角到右下角的路径,使得该路径上所有数字的乘积的末尾0最少.解题思路:我们设k为2的因子数,m为5的因子数,那么一个数的末尾0的个数就是min(k,m).我们设dp[i][j][0]为从左上角到点(i,j)的乘积的最少2因子数,dp[i][j][1]为从左上角到点(i,j)的乘积的最少5因子数.那么ans=min(dp[i][j][0],dp[i][j…
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a l…
大家或许还记得 Quake III 里面的一段有如天书般的代码,其中用到的神秘常量 0x5F3759DF 究竟是怎么一回事,着实让不少人伤透了脑筋.今天,我见到了一段同样诡异的代码.     下面这个位运算小技巧可以迅速给出一个数的二进制表达中末尾有多少个 0 .比如, 123 456 的二进制表达是 1 11100010 01000000 ,因此这个程序给出的结果就是 6 . unsigned int v;  // find the number of trailing zeros in 32…