Machine Learning No.5: Neural networks】的更多相关文章

1. advantage: when number of features is too large, so previous algorithm is not a good way to learn complex nonlinear hypotheses. 2. representation "activation" of unit i in layer j matrix of weights controlling function mapping from layer j to…
引子 对于一个特征数比较大的非线性分类问题,如果采用先前的回归算法,需要很多相关量和高阶量作为输入,算法的时间复杂度就会很大,还有可能会产生过拟合问题,如下图: 这时就可以选择采用神经网络算法. 神经网络算法最早是人们希望模仿大脑的学习功能而想出来的. 一个神经元,有多个树突(Dendrite)作为信息的输入通道,也有多个轴突(Axon)作为信息的输出通道.一个神经元的输出可以作为另一个神经元的输入.神经元的概念和多分类问题的分类器概念很相近,都是可以接收多个输入,在不同的权值(weights)…
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   This is the first in a series of posts looking at the ‘top 100 awesome deep learning papers.’ Deviating from the normal one-paper-per-day format, I’ll ta…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…
目录 概 主要内容 代码 Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural networks. In International Conference on Machine Learning (ICML), 2019. 概 有向无环图 + GNN + VAE. 主要内容 先前已经有工作(NOTEARS)讨论了如何处理线性SEM模型 \[X = A^TX + Z, \] \(A \i…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } span.s1 { } span.s2 { text-decoration: underline } Is objec…
Machine Learning, Homework 9, Neural NetsApril 15, 2019ContentsBoston Housing with a Single Layer and R package nnet 1Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Digit Recognition wit…
The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient problem or the exploding gradient problem. It's that the gradient in early layers is the product of terms from all the later layers. When there are many…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…