[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0),使q为一个奇数 第二项如果是1,mod 1 为0可以忽略. 则我们求: 2^2^2… mod p =2^k*(2^(2^2…-k) mod q) 因为q是奇数所以与2互质,根据欧拉定理: a^phi(p) mod p=1,(a,p)=1 转化为: 2^k*(2^(2^2…mod phi(p) –…