pandas时间数据的集成处理】的更多相关文章

工作中遇到的一个问题: 统计各地区新能源汽车的充电时长 数据来源是北理新源的单日全球的运行数据. 这里仅统计北上广重庆四个地区的 数据处理的代码就省略了 需要整理好的是4个dataframe(数据已保存为H5格式) 分别是对应上述4个城市的: import pandas as pd from pyecharts import Boxplot,Pie,Page theme_echart='infographic' location_list=['shanghai','chongqing','gua…
http://blog.csdn.net/pipisorry/article/details/52209377 其它时间序列处理相关的包 [P4J 0.6: Periodic light curve analysis tools based on Information Theory] [p4j github] pandas时序数据文件读取 dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')data = pd.read_c…
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 数据分组--〉归纳 程序示例: import numpy as np import pandas as pd # 读入数据 df=pd.read_csv('data1.txt') print('原始数据') print(df) #返回一个对象 group=df.groupby(df['产地']) #…
Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = df_1.drop(columns=['deptNo','routeNo']).copy() del df_2['trp_vehicleType'] #列名变更 df_3 = df_2.rename(columns={'dingdanNo':'订单号', 'createTime':'建单时间'})…
上面一篇文章有记录pandas构造数据框的方式有二维数组,字典,嵌套的列表和元组等,本篇用于介绍通过外部数据读取的方式来构造数据框. python读取外部数据集的时候,这些数据集可能包含在文本文件(csv,txt),电子表格Excel和数据库中(Mysql,SQL server)等,那么如何来用pandas来实现这些 文件,表格和数据库的读取呢? 1.文本文件的读取 read_table函数介绍 函数原型: pd.read_table(filepath_or_buffer,sep='t',hea…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 获取金额最大前10项 Loc 单列数据筛选并排序 多列数据筛选并排序 按筛选条件求和(sumif, sumifs) 按筛选条件计数(countif, countifs) 按筛选条件计算均值(averageif, averageifs) 按筛选条件获取最大值和最小值 筛选和排序是Excel中使用频率…
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信息 按日期汇总信息 resample() 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔数,大于5000元的贷款数量等等.本篇文章介绍如何通过python按特定的维度或条件对数据进行提取,完成数据提取需求. 准备工作 首先是准备…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(index) 增加一个值变量(value) 更改数值汇总方式 增加数值汇总方式 增加一个列维度(columns) 增加多个列维度 增加数据汇总值 数据透视表是Excel中最常用的数据汇总工具,它可以根据一个或多个制定的维度对数据进行聚合.在python中同样可以通过pandas.pivot_table函数来…
今天抽时间整理了一篇mysql中与天.周.月有关的时间数据的sql语句的各种写法,部分是收集资料,全部手工整理,自己学习的同时,分享给大家,并首先默认创建一个表.插入2条数据,便于部分数据的测试,其中部分名词或函数进行了解释说明.直入主题 创建表: 复制代码代码如下: create table if not exists t(   id int,   addTime datetime default '0000-00-00 00:00:00′) 添加两条初始数据: insert t values…
function(e): 事件包括事件源和事件数据,事件源是指是谁触发的这个事件,谁就是事件源(div,按钮,span都可以是事件源),时间数据是指比如点击鼠标的事件中,事件数据就是指点击鼠标的左建或者右键,还是双击,这就是事件数据,时间数据存放在e中. 全选: <body> <input type="checkbox" id="qx" /> 全选 <input type="checkbox" value="…
日期和时间数据的处理. (1)字符串日期 ‘20080301’,这一串为字符串日期,但必须保证为四位的年份,两位的月份,两位的日期.例如,查询订单表日期大于‘20080301’.可以这样写: 1 select * from sales.orders 2 where orderdate>'20080301' 结果如图所示: (2)cast进行转化.例如,可以讲‘20080301’转化为时间类型.其结果跟上图一样. 1 select * from sales.orders 2 where order…
Pandas 把数据写入csv from sklearn import datasets import pandas as pd iris = datasets.load_iris() iris_X = iris.data iris_y = iris.target df=pd.DataFrame(iris_y) df.to_csv(r"C:\Users\si\Desktop\11.csv")…
将字符串类型的时间转换成date类型可以使用SimpleDateFormat来转换,具体方法如下:1.定义一个字符串类型的时间:2.创建一个SimpleDateFormat对象并设置格式:3.最后使用SimpleDateFormat的parse方法将String类型的时间转换成Date类型的时间.具体代码如下: String string = "2014-3-17"; SimpleDateFormat dateFormat = new SimpleDateFormat("yy…
最近一段时间项目里面使用WebAPI比较多,但是在返回时间数据的时候回默认带上T,就像这样子 "2016-04-21T13:26:17.4701811+08:00", 这样的数据在其他系统解析的时候会出现一些奇葩的问题,而且在调试的时候也不好识别.用百度查了一下,网上给出了如下的解决方案,在App_Start文件夹中的WebApiConfig.cs文件中Register方法中设置全局的Json序列化器时间转换格式,即可去除时间数据中的T.具体代码如下: //返回时间不带T config…
pandas选取数据可以通过 loc iloc  [] 来选取 使用loc选取某几列: user_fans_df = sample_data.loc[:,['uid','fans_count']] 使用[] 来选取列 reader_login_freq_df = sample_data[['reader_uid','reader_login_freq','reader_age']] []选取,应该是返回了元数据的一份视图,本质上应该没有新生成一份数据. loc应该是又返回了一份新的数据…
[笔记]Pandas分类数据详解 Pandas  Pandas分类数据详解|轻松玩转Pandas(5) 参考:Pandas分类数据详解|轻松玩转Pandas(5)…
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846634 引入包和加载数据 import pandas as pd import numpy as np train_df =pd.read_csv('../datas/train.csv') # train set test_df = pd.read_csv('../datas/test.csv')…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…
在Jquery里格式化Date日期时间数据: $(function(){ //当前时间格式化yyyy-MM-dd HH:mm:ss alert(timeStamp2String(new Date().getTime())); alert(timeStamp3String(new Date().getTime())); debugger; }); //在Jquery里格式化Date日期时间数据 function timeStamp2String(time){ var datetime = new…
一.Pandas的数据操作 0.DataFrame的数据结构 1.Series索引操作 (0)Series class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). #带轴标签的一维ndarray(包括时间序列). Labels need not be unique but must be a…
# pandas新增数据列(直接赋值.apply.assign.分条件赋值) # pandas在进行数据分析时,经常需要按照一定条件创建新的数据列,然后进行进一步分析 # 1 直接赋值 # 2 df.apply方法 # 3 df.assig方法 # 4 按条件选择分组分别赋值 import pandas as pd # 0 读取csv数据到dataframe df = pd.read_csv("beijing_tianqi_2018.csv") print(df.head()) # 1…
其它课程中的python---5.Pandas处理数据和读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学都来得及. 面试的时候看什么:产品.资质.潜力.热情 这几个最重要 python怎么学习:先学大纲,学主干,枝叶等用的时候再去学,这样很快 1.Pandas数据结构有哪些? Series:数组与标签 Dataframe:表格型数据结构 ◆Series -数组与标签 -可以通过标签选取数据 -定长的有…
python 获取当天和前几天时间数据 import datetime from datetime import datetime, date, timedelta def dayDateRange(): dates = [] for i in range(2, -1, -1): yesterday = (date.today() + timedelta(days=-i)).strftime("%Y-%m-%d") # 昨天日期 dates.append(yesterday) retu…
Pandas查询数据 Pandas查询数据的几种方法 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询 df.where方法 df.query方法 .loc既能查询,又能覆盖写入,强烈推荐! Pandas使用df.loc查询数据的方法 使用单个label值查询数据 使用值列表批量查询 使用数值区间进行范围查询 使用条件表达式查询 调用函数查询 注意 以上查询方法,既适用于行,也适用于列 注意观察降维dataFrame>Series>值 0.读取数据 数据为…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
1.时间戳Timestamp() 参数可以为各种形式的时间,Timestamp()会将其转换为时间. time1 = pd.Timestamp('2019/7/13') time2 = pd.Timestamp('13/7/2019 13:05') time3 - pd.Timestamp('2019-7-13') time4 = pd.Timestamp('2019 7 13 13:05') time5 = pd.Timestamp('2019 July 13 13') time6 = pd.…
最近在做论文的数据处理,涉及到不同年份不同季节的分析.另外还要求不同季节的数据可以单独分析. 其实思路还是比较简单的,那就在原始数据中增加一栏:季节 2013-05-21 Aotizhongxin 124.3 Spring 2013-05-22 Aotizhongxin 85.7 Spring 2013-05-23 Aotizhongxin 71.2 Spring 2013-05-24 Aotizhongxin 75.6 Spring 2013-05-25 Aotizhongxin 95.5 S…
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 何时以及为什么数据丢失? 想象一下有一个产品的在线调查.很多时候,人们不会分享与他们有关的所有信息. 很少有人分享他们的经验,但不是他们使用产品多久; 很少有人分享使用产品的时间,经验,但不是他们的个人联系信息. 因此,以某种方式或其他方式,总会有一部分数据总是会丢失,这是非常常见的现象. 现在来看看如何处…