1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> using namespace std; #define maxn 1000+5 int n; int a[maxn][maxn]; int d[maxn][maxn]; int main(){ for(;cin>>n && n;){ memset(d,,sizeof(d));…
题目描述 对于一个递归函数w(a,b,c) 如果a<=0 or b<=0 or c<=0就返回值1. 如果a>20 or b>20 or c>20就返回w(20,20,20) 如果a<b并且b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c) 其它别的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1) 这是个简单的递归函数,但实现起来可能会有些问题.当a,b,c均为1…
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to…
一.问题描述 物品无限的背包问题:有n种物品,每种均有无穷多个.第 i 种物品的体积为Vi,重量为Wi.选一些物品装到一个容量为 C 的背包中,求使得背包内物品总体积不超过C的前提下重量的最大值.1≤n≤100, 1≤Vi≤C≤10000, 1≤Wi≤1000000. 二.解题思路 我们可以先求体积恰好为 i 时的最大重量(设为d[i]),然后取d[i]中的最大值(i ≤ C).与之前硬币问题,“面值恰好为S”就类似了.只不过加了新属性——重量,相当于把原来的无权图改成带权图,即把“+1”变成“…