1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一项艰巨的任务. 本文我们将讨论nClouds如何帮助您应对数据延迟,数据质量,系统可靠性和数据隐私合规性方面的挑战. Amazon EMR上的Apache Hudi是需要构建增量数据管道.大规模近实时处理数据的理想解决方案.本篇文章将在Amazon EMR的Apache Hudi上进行原型验证. n…
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amazon S3)是针对结构化和非结构化数据的高性能对象存储服务,可以用来作为数据湖底层的存储服务. 然而许多用例,如从上游关系数据库执行变更数据捕获(CDC)到基于Amazon S3的数据湖,都需要在记录级别处理数据,执行诸如从数据集中插入.更新和删除单条记录的操作需要处理引擎读取所有对象(文件),进行…
1. 介绍 经过Apache Hudi项目委员会讨论及投票,向Udit Mehrotra.Gary Li.Raymond Xu.Pratyaksh Sharma 4人发出Committer邀请,4人均已接受邀请并顺利成为Committer,也使得Apache Hudi Committer成员在不断发展壮大. Udit Mehrotra是来自AWS EMR团队的一员,在去年9/10月份开始参与Apache Hudi社区,帮助Apache Hudi集成至EMR中,将Apache Hudi引入AWS生…
将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分析数据. 尽管这些工具功能强大,但是在处理需要进行增量数据处理以及记录级别插入,更新和删除场景时,仍然非常具有挑战. 与客户交谈时,我们发现有些场景需要处理对单条记录的增量更新,例如: 遵守数据隐私法规,在该法规中,用户选择忘记或更改应用程序对数据使用方式的协议. 使用流数据,当你必须要处理特定的数…
​Apache Hudi是一个开源的数据管理框架,其通过提供记录级别的insert, update, upsert和delete能力来简化增量数据处理和数据管道开发.Upsert指的是将记录插入到现有数据集中(如果它们不存在)或进行更新(如果它们存在的话)的功能.通过高效管理Amazon S3中数据的布局方式,Hudi允许近乎实时地提取和更新数据.Hudi维护在数据集上所执行的操作的元数据,以确保这些操作的原子性和一致性. Hudi可与Apache Spark.Apache Hive和Prest…
1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入). Hudi处理数据插入和更新,不会创建太多的小文件(小文件会导致查询端性能降低),Apache Hudi自动管理及合并小文件,让其保持指定大小,这避免了自建解决方案来监控和重写小文件为大文件. Hudi数据集在如下场景下非常适用 使用GDPR和CCPA法规来删除用户个人信息或修改个人信息用途. 处…
Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集. 1. 准备-Spark环境,S3 Bucket 需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell: $ export…
认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍,它们需要访问数据仓库之外的大量信息. 开放的Lakehouse 云计算发展引发了计算与存储分离,这利用了成本优势并能够灵活地存储来自多个来源的数据. 所有这一切都催生了开放Lakehouse的新数据平台架构.现在通过使用 Presto 和 Apache Hudi 等开源和开放格式技术解决了传统云数据…
1. 介绍 经过Apache Hudi项目委员会讨论及投票,向WangXiangHu和LiWei 2人发出Committer邀请,2人均已接受邀请并顺利成为Committer,也使得Apache Hudi Committer成员在不断发展壮大. Wang XiangHu参与Apache Hudi社区贡献已经超过1年时间,完成了Apache Hudi和Apache Spark的解耦工作,并且实现了Flink写Hudi的第一个版本,同时也实现了Commit回调机制,在每次Commit完成后发送HTT…