GEMM与AutoKernel算子优化】的更多相关文章

GEMM与AutoKernel算子优化 随着AI技术的快速发展,深度学习在各个领域得到了广泛应用.深度学习模型能否成功在终端落地应用,满足产品需求,一个关键的指标就是神经网络模型的推理性能.一大波算法工程师为了算法的部署转岗算子优化工程师.优化代码并不是一件简单的事,要求工程师既要精通计算机体系架构,又要熟悉算法的计算流程,稍微有经验的深度学习推理优化工程师都成了各家公司争抢的"香饽饽".需求多,算子优化自动化成为了未来的一大趋势. 为了方便更多的工程师进行推理优化,一个致力于降低优化…
Spark算子主要划分为两类:transformation和action,并且只有action算子触发的时候才会真正执行任务.还记得之前的文章<Spark RDD详解>中提到,Spark RDD的缓存和checkpoint是懒加载操作,只有action触发的时候才会真正执行,其实不仅是Spark RDD,在Spark其他组件如SparkStreaming中也是如此,这是Spark的一个特性之一.像我们常用的算子map.flatMap.filter都是transformation算子,而coll…
作者:严健文 | 旷视 MegEngine 架构师 背景 在数字信号和数字图像领域, 对频域的研究是一个重要分支. 我们日常"加工"的图像都是像素级,被称为是图像的空域数据.空域数据表征我们"可读"的细节.如果我们将同一张图像视为信号,进行频谱分析,可以得到图像的频域数据. 观察下面这组图 (来源),频域图中的亮点为低频信号,代表图像的大部分能量,也就是图像的主体信息.暗点为高频信号,代表图像的边缘和噪声.从组图可以看出,Degraded Goofy 与 Goofy…
一.在聚合前在map端先预聚合 使用reduceByKey/aggregateByKey代替groupByKey 二.一次处理一个分区的数据,不过要注意一个分区里的数据不要太大,不然会报oom * 使用mapPartitions代替map * 使用foreachPartitions代替foreach 三.使用重分区 * 在过滤后使用算子coalesce(),避免过滤后可能产生的数据倾斜 四.对多次使用的rdd进行持久化,增加rdd的复用性. 每个rdd都会有一个血缘链,如果某个算子的上游rdd能…
本文由  网易云发布. 本文具体讨论了Join基础算法的一种优化方案  – Runtime Filter,在本文最后还引申地聊了聊谓词 下推技术.同时,在本文文章开头,笔者引出了两个问题,SQL执行引擎如何知晓参与Join的两波数据集大小?衡量两波数据集 大小的是物理大小还是纪录多少抑或两者都有?这关系到SQL解析器如何正确选择Join算法的问题.好了,这些就是这篇文章要为 大家带来的议题-基于代价优化(Cost-Based Optimization,简称CBO). CBO基本原理 提到CBO,…
大家好!转眼又到了经验分享的时间了.吼吼,我这里没有摘要也没有引言,只有单纯的经验分享,请见谅哦! 言归正传,目前在大数据领域能够提供的核心计算的工具,如离线计算hadoop生态圈的mr计算模型,以及依赖mr的hive:在spark生态圈中包含spark core和spark sql.实时计算领域中有storm和spark streaming. 那么单纯看技术核心,本质上就是mr和spark 两种计算模型的竞争,那么storm会在以后的分享中提及,这里不做介绍. 之前很多人都在呼吁说spark的…
如何提高 Flink 任务性能 一.Operator Chain 为了更高效地分布式执行,Flink 会尽可能地将 operator 的 subtask 链接(chain)在一起形成 task,每个 task 在一个线程中执行.将 operators 链接成 task 是非常有效的优化:它能减少线程之间的切换,减少消息的序列化/反序列化,减少数据在缓冲区的交换,减少了延迟的同时提高整体的吞吐量. Flink 会在生成 JobGraph 阶段,将代码中可以优化的算子优化成一个算子链(Operato…
作者:马骏 | 旷视 MegEngine 架构师 前言 单精度矩阵乘法(SGEMM)几乎是每一位学习 CUDA 的同学绕不开的案例,这个经典的计算密集型案例可以很好地展示 GPU 编程中常用的优化技巧,而能否写出高效率的 SGEMM Kernel,也是反映一位 CUDA 程序员对 GPU 体系结构的理解程度的优秀考题.本文将详细介绍 CUDA SGEMM 的优化手段,适合认真阅读过 <CUDA C++ Programming Guide>,具备一定 CUDA 编程基础的同学阅读,希望能给追求极…
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
Halide应用开发 1. 基本原理 1.1.介绍 随着人工智能的普及,深度学习网络的不断涌现,为了让各硬件(CPU, GPU, NPU,...)能够支持深度学习应用,各硬件芯片需要软件库去支持高性能的深度学习张量运算.目前,这些高性能计算库主要由资深HPC工程师(高性能计算优化工程师)进行开发,为了加快开发进程,缩短深度学习应用落地周期,自动化算子优化是一个趋势. AutoKernel是由OPEN AI LAB提出的高性能算子自动优化工具,可以自动优化调度策略.生成底层优化代码,大幅减少各硬件…