机器学习PAL基本概念】的更多相关文章

机器学习PAL基本概念 本文介绍PAI-Studio.PAI-DSW及PAI-EAS的基本概念. PAI-Studio PAI-DSW PAI-EAS…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
机器学习PAL数据可视化 本文以统计全表信息为例,介绍如何进行数据可视化. 前提条件 完成数据预处理,详情请参见数据预处理. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 > Studio-可视化建模. 在PAI可视化建模页面,单击进入机器学习.                                                                                                                     …
机器学习PAL数据预处理 本文介绍如何对原始数据进行数据预处理,得到模型训练集和模型预测集. 前提条件 完成数据准备,详情请参见准备数据. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训练 > Studio-可视化建模.在PAI可视化建模页面,单击进入机器学习.                                                                                                               …
机器学习PAL产品优势 PAI支持丰富的机器学习算法.一站式的机器学习体验.主流的机器学习框架及可视化的建模方式.本文介绍PAI的产品优势. 丰富的机器学习算法 PAI的算法都经过阿里巴巴集团大规模业务的沉淀,不仅支持基础的聚类和回归类算法,同时也支持文本分析和特征处理等复杂算法. 支持对接阿里云其他产品 PAI训练的模型直接存储在MaxCompute中,可以配合阿里云的其他产品使用. 一站式的机器学习体验 PAI支持从数据上传.数据预处理.特征工程.模型训练.模型评估到模型发布的机器学习全流程…
本文是笔者学习李航老师的经典教材<统计学习方法>第一章的学习笔记,分享在此,作为机器学习系列的开篇文章,在本系列中,将会逐一总结介绍主要的机器学习算法的基本原理.基于Python的具体实现.使用sklearn等第三方库的调用实践. 1.统计学习的基本概念 1-1.统计学习的定义 统计学习是关于计算机基于数据构建概率统计模型,并运用模型对数据进行预测与分析的一门科学,又称统计机器学习. 1-2.统计学习的特点 1)建立在计算机及网络上: 2)以数据为研究对象: 3)用于对数据进行预测与分析: 4…
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化原语和高层的管道API. MLllib目前分为两个代码包: spark.mllib 包含基于RDD的原始算法API. spark.ml 则提供了基于DataFrames 高层次的API,可以用来构建机器学习管道. 我们推荐您使用spark.ml,…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…
学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数字的图片.在这个例子中就是通过机器学习训练一个模型,以识别图片中的数字. MNIST数据集来自 http://yann.lecun.com/exdb/mnist/ Tensorflow提供了一份python代码用于自动下载安装数据集.Tensorflow官方文档中的url打不开,在CSDN上找到了一…