D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding," Advances in Neural Information Processing Systems, vol. 30, 2017, Accessed: Jul. 31, 2021. [Online]. Availabl…
J. N. Tsitsiklis and Z.-Q. Luo, "Communication complexity of convex optimization," Journal of Complexity, vol. 3, no. 3, pp. 231–243, Sep. 1987, doi: 10.1016/0885-064x(87)90013-6. 问题描述 两个用户各自有一个凸函数\(f_i\),相互交互最少的二进制消息,从而找到\(f_i+f_2\)的最优点 基本定义 \(…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learning of Deep Networks from Decentralized Data," in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Apr. 2017…
论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2015. 如何将一堆模型或一个超大模型的知识压缩到一个小模型中,从而更容易进行部署? 训练超大模型是因为它更容易提取出数据的结构信息(为什么?) 知识应该理解为从输入到输出的映射,而不是学习到的参数信息 模型的泛化性来源于错误答案的相对概率大小(一辆宝马被误判为卡车的概率大于被误判为萝卜的概率),而泛化性是学…