上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…
ImageNet Classification with Deep Convolutional Neural Networks 论文理解  在ImageNet LSVRC-2010上首次使用大型深度卷积神经网络,并获得很好的成果. 数据集:ILSVRC使用ImageNet的一个子集,1000个类别每个类别大约1000张图像.总计,大约120万训练图像,50000张验证图像和15万测试图像. 网络架构:5个卷积层和3个全连接层另外还有无权重的池化层. 激活函数使用了ReLU非线性函数,大大加快了训…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…
摘要:我们提出了一种不依赖模型的元学习算法,它与任何梯度下降训练的模型兼容,适用于各种不同的学习问题,包括分类.回归和强化学习.元学习的目标是在各种学习任务上训练一个模型,这样它只需要少量的训练样本就可以解决新的学习任务.在我们的方法中,模型的参数被显式地训练,使得少量的梯度步骤和少量的来自新任务的训练数据能够在该任务上产生良好的泛化性能.实际上,我们的方法训练模型易于微调.结果表明,该方法在两个few shot图像分类基准上都取得了最新的性能,在少镜头回归上取得了良好的效果,并加速了基于神经网…
在我之前的文章中,我讨论了如何对卷积神经网络(CNN)学习的权重进行拓扑数据分析,以便深入了解正在学习的内容以及如何学习它. 这项工作的重要性可归纳如下: 它使我们能够了解神经网络如何执行分类任务. 它允许我们观察网络的学习方式 它允许我们看到深层网络中的各个层如何在它们检测到的内容上有所不同 在这篇文章中,我们展示了如何将这种理解用于实际目的.那些是: 如何使用持久同源性的条形码长度来推断CNN的准确性. 我们的研究结果如何从一个数据集推广到下一个数据集. 使用持久同源条形码方法如何定量测量数…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…