Activity Recognition行为识别】的更多相关文章

暑假听了computer vision的一个Summer School,里面Jason J. Corso讲了他们运用Low-Mid-High层次结构进行Video Understanding 和 Activity Recognition的方法,受益颇深,在这里把他的方法总结一下: ------------------------------------------------------------------------------------------------- 1. 层次结构表示:…
Heterogeneity Activity Recognition Data Set:https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition 经过https://github.com/yscacaca/HHAR-Data-Process处理后,类别对应的gt: gtType = ["bike", "sit", "stand", "walk&q…
This article aims to tackle the problem of group activity recognition in the multiple-person scene. 1)以往模型忽略:most long short-term memory (LSTM)-based methods first learn the person-level action representations by several LSTMs and then integrate all…
CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition 作者:Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan 论文链接:https://arxiv.org/abs/1902.09130 2.Improving the Performance of Unimodal Dynami…
猪圈子,一个有个性的订阅号 01 测量人脸识别的主要性能指标有 1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率; 2.拒识率(False;RejectRate;FRR):这是将指定人员误作其它人员的概率. 计算机在判别时采用的阈值不同,这两个指标也不同.一般情况下,误识率FAR;随阈值的增大(放宽条件)而增大,拒识率FRR;随阈值的增大而减小.因此,可以采用错误率(Equal;Error;Rate;ERR)作为性能指标,这是调节阈值,使这FAR和FRR两…
文章目录 准备 最终结果 未来改进 准备 机器: Titan XP 12GB, 64GB RAM, 机器非常强,可靠. 下次有机会购买RTX 2080 Ti 试试 最终结果 错误率可以达到万分之一,非常可考 未来改进 精简模型 多模型融合,提升准确度…
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…
转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门…
================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的: Deep Learning之前最work的是INRIA组的Improved Dense…
前面两节所有应用都是同一个activity中的,是时候讲activity之间交互的操作了,此后会涉及到intent这个概念,这也算一个新的里程碑开始. 主要内容包括intent的使用,以及activity之间的数据传递. 假设有两个activity,MainActivity跟SecondActivity,其中MainActivity是主活动,现在MainActivity需要调用SecondActivity,则可以用以下两种方式. 1.activity跳转 (1)显示intent:使用显示inte…