批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem). 统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的.也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shi…
2年前在学习图像算法的时候看到一个文档倾斜矫正的算法. 也就是说能将一些文档图像进行旋转矫正, 当然这个算法一般用于一些文档扫描软件做后处理 或者用于ocr 文字识别做前处理. 相关的关键词: 抗倾斜 反倾斜  Deskew 等等. 最简单算法实现思路,采用 霍夫变换(Hough Transform)进行直线检测, 当然也可以用霍夫变换检测圆. 在倾斜矫正算法中,自然就是检测直线. 通过对检测出来的直线进行角度判断, 一般取 认可度最高的几条直线进行计算, 最后求取均衡后的角度值. 进行图像角度…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
前言 从原来只知道-Xms.-Xmx是设置内存的,到现在稍微理解了一些堆内存等Java虚拟机的一些知识.明白了技术这一个东西还是得要有输入才能实践,原理与实践要相辅相成,后续把JVM的监控好好总结一下.以前做了很多的关于JVM方面的监控,仅仅只是做了,但是不知道是什么意思,不知道怎么分析.   垃圾收集算法 一.标记(清除算法)   最基础的收集算法是"标记-清除"(Mark-Sweep)算法,算法分为"标记"和"清除"两个阶段.首先标记出所有需…
近期被图像切割整的天昏地暗的,在此感谢老朋友周洋给我关于分水岭算法的指点!本来打算等彩色图像切割有个完满的结果再写这篇文章,可是考虑到到了这一步也算是一个阶段,所以打算对图像切割做一个系列的博文,于是先写这篇. 啰嗦了这么多!先看效果: 效果一般,存在着非常多过切割现象,但比没使用滤波之前的效果好非常多,过切割是分水岭算法的通病.这个兴许博文会继续解决. 本文用java实现的是基于自己主动种子区域的分水岭算法,注意本文是基于单色的切割,所以将输入图片首先进行灰度化处理,这个比較简单,不多提了:因…
第一种冒泡排序 第二种 选择排序 第三种.插入排序…
一步步教你轻松学关联规则Apriori算法 (白宁超 2018年10月22日09:51:05) 摘要:先验算法(Apriori Algorithm)是关联规则学习的经典算法之一,常常应用在商业等诸多领域.本文首先介绍什么是Apriori算法,与其相关的基本术语,之后对算法原理进行多方面剖析,其中包括思路.原理.优缺点.流程步骤和应用场景.接着再通过一个实际案例进行语言描述性逐步剖析.至此,读者基本了解该算法思想和过程.紧接着我们进行实验,重点的频繁项集的生成和关联规则的生成.最后我们采用综合实例…
一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理论知识包括什么是聚类.聚类的应用.聚类思想.聚类优缺点等等:然后通过k-均值聚类案例实现及其可视化有一个直观的感受,针对算法模型进行分析和结果优化提出了二分k-means算法.最后我们调用机器学习库函数,很短的代码完成聚类算法.(本文原创,转载必须注明出处:一步步教你轻松学K-means聚类算法 目…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…