#容斥,排列组合#U138404 选数字】的更多相关文章

题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith Lord Darth Vader. A powerful Force-user who lived during the era of the Galactic Empire, Marek originated from the Wookiee home planet of Kashyyyk as…
/** 题目:hdu6143 Killer Names 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:有m种字符(可以不用完),组成两个长度为n的字符串,要求这两个字符串含有的字符没有相同的. 求有多少种方式组成这两个字符串. 思路:容斥+排列组合 反思一开始以为这题是dp,然后想了很久没想出来,觉得挺不好处理的,,能力不足. 后来想到是容斥. f[n][1]表示长度为n的字符串用1种字符填充的方法数. f[n][2] = 2^n -…
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; #define MOD 1000000007 #define MAX 3000300 void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;} int n,m,inv[MAX],jc[MAX],jv[MAX],N,ans; int Calc(int x,in…
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/show/P4478 看到标题开始还以为是AHOI的小雪和小可可…… 题解:乍一看会40pts:测试点1.2:n,m<=1000的直接O(nm)DP:测试点3.4:没有障碍物直接C(n+m,n),然后p=1e6+3是质数可以直接取模. 想了几分钟会60pts:测试点5.6:模数可以拆成几个不超过1e…
找10组合算法,非递归 http://blog.csdn.net/sdhongjun/article/details/51475302…
考试的时候考的一道题,感觉挺神的. 我们发现将所有数去重后最多只会选不到 $7$ 后 $gcd$ 就会变成 $1$. 令 $f[i][k]$ 表示选 $i$ 个数后 $gcd$ 为 $k$ 的方案数. 那么这 $i$ 个数中每个数都必须是 $k$ 的倍数. 令 $cnt[k]$ 为所有数中是 $k$ 的倍数的个数,这个可以在接近线性的时间内求出. 那么,选 $i$ 个数的总方案数位 $C_{cnt[k]}^{i}$,不和法的方案为这 $i$ 个数的 $gcd$ 是大于 $k$ 的,即 $k$ 的…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:m种颜色需要为两段长度为n的格子染色,且这两段之间不能出现相同的颜色,问总共有多少种情况. 解法:枚举要为这两段分配的颜色数目分别为 i,j ,则在第一段总共有 C(m,i) 种选取方案,在第二段总共有 C(m−i,j) 种选取方案.而在每段内部,我们设 F(n,x) 为长度为 n 的格子使用 x 种颜色(等于 x )染色的方案数.则根据容斥原理 F(n,x)=x^n−C(x,1)*(x…
2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优化即可. 进一步的可以设出其生成函数 对于第i次放数字 生成函数为\(F(x)=1+x^1+x^2+...x^{n-i}\) 那么容易得到答案的生成函数为 \(G(x)=\frac{\Pi_{i=1}^{n}(1-x^i)}{(1-x)^n}\) 化简一下 然后dp出来方案数即可 可以发现这个dp是…
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交的补集]和[集合并 或 集合并的补集]之间相互转化的问题. 定义目标函数为f(m),已知函数g(T).(例如已知集合并,则T表示所有T个集合的集合并,通常g(T)=C(n,T)*T个集合的集合并) 当两者都不是补集或两者都是补集时,有f(S)=Σ(-1)|T|-1g(T),其中T为S的非空子集,即奇…