谷歌在文章<Attention is all you need>中提出的transformer模型.如图主要架构:同样为encoder-decoder模式,左边部分是encoder,右边部分是decoder.TensorFlow代码:https://www.github.com/kyubyong/transformer 用 sentencepiece 进行分词. Encoder 输入 初始输入为待翻译语句的embedding矩阵,由于句子长度不一致,需要做统一长度处理,长度取maxlength…
预训练模型--开创NLP新纪元 论文地址 BERT相关论文列表 清华整理-预训练语言模型 awesome-bert-nlp BERT Lang Street huggingface models 论文贡献 对如今自然语言处理研究中常用的预训练模型进行了全面的概述,包括背景知识.模型架构.预训练任务.预训练模型的各种扩展.预训练模型的适应方法.预训练模型相关资源和应用. 基于现有的对预训练模型分类方法,从四个不同的角度提出了一个新的分类方法,它从四个不同的角度对现有的原型系统进行分类: 表示类型…
Topic:表情识别Env: win10 + Pycharm2018 + Python3.6.8Date:   2019/6/23~25 by hw_Chen2018                                  CSDN: https://blog.csdn.net/qq_34198088/article/details/97895876[感谢参考文献作者的辛苦付出:编写不易,转载请注明出处,感谢!]一.简要介绍 本文方法参考文献[1]的表情识别方法,实验数据集为JAFFE…
目录 三大特征提取器 - RNN.CNN和Transformer 简介 循环神经网络RNN 传统RNN 长短期记忆网络(LSTM) 卷积神经网络CNN NLP界CNN模型的进化史 Transformer 3.1 多头注意力机制(Multi-Head Attention) 位置编码(Positional Encoding) 残差模块(Residual Block) Transformer小结 三大特征提取器 - RNN.CNN和Transformer 简介 近年来,深度学习在各个NLP任务中都取得…
导言: 本文介绍了一个在空间和尺度上全活跃特征交互(fully active feature interaction across both space and scales)的特征金字塔transformer模型,简称FPT.该模型将transformer和Feature Pyramid结合,可用于像素级的任务,在论文中作者进行了目标检测和实力分割,都取得了比较好的效果.为了讲解清楚,若有transformer不懂的读者,关于transformer可以在公众号中看另一篇文<Transforme…
​前言 本文介绍了现有实例分割方法的一些缺陷,以及transformer用于实例分割的困难,提出了一个基于transformer的高质量实例分割模型SOTR. 经实验表明,SOTR不仅为实例分割提供了一个新的框架,还在MS Coco数据集上超过了SOTA实例分割方法. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:SOTR: Segmenting Objects with Transformers 代码:h…
数据融合(data fusion)原理与方法 数据融合(data fusion)最早被应用于军事领域.     现在数据融合的主要应用领域有:多源影像复合.机器人和智能仪器系统.战场和无人驾驶飞机.图像分析与理解.目标检测与跟踪.自动目标识别等等.在遥感中,数据融合属于一种属性融合,它是将同一地区的多源遥感影像数据加以智能化合成,产生比单一信息源更精确.更完全.更可靠的估计和判断......一. 数据融合基本涵义      数据融合(data fusion)最早被应用于军事领域.     现在数…
目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向 待办 目标检测问题时间线 特征金字塔加滑窗 对象框推荐 回归算法回归对象框 多尺度检测 BBOX 回归发展 NMS技术发展 困难样本挖掘技术发展--样本不均衡问题 https://zhuanlan.zhihu.com/p/98756890 目标检测的加速方式 https://zhuanlan.zhihu.com/p/98756890 最新进展 1.更好的引擎 DenseNet,在残差网…
目标检测中特征融合技术(YOLO v4)(下) ASFF:自适应特征融合方式 ASFF来自论文:<Learning Spatial Fusion for Single-Shot Object Detection>,也就是著名的yolov3-asff. 金字塔特征表示法(FPN)是解决目标检测尺度变化挑战的常用方法.但是,对于基于FPN的单级检测器来说,不同特征尺度之间的不一致是其主要限制.因此这篇论文提出了一种新的数据驱动的金字塔特征融合方式,称之为自适应空间特征融合(ASFF).它学习了在空…
目标检测中特征融合技术(YOLO v4)(上) 论文链接:https://arxiv.org/abs/1612.03144 Feature Pyramid Networks for Object Detection Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie PANet(Path Aggregation Network) 论文地址: https://arxiv.o…