目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral domain:频域方法(谱方法) 3. 什么是拉普拉斯矩阵? 3.1 常用的几种拉普拉斯矩阵 普通形式的拉普拉斯矩阵 对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian) 随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian) 泛化…
[GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_41727666/article/details/84622965 本文为从CNN到GCN的联系与区别——GCN从入门到精(fang)通(…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展.不得不专门为GCN开一个新篇章,表示其重要程度.本文结合大量参考文献,从理论到实践,从由来到数学推导,讲述GCN的发展和应用. 综述 在扎进GCN的汪洋大海前,我们先搞清楚GCN是做什么的,有什么用.深度学习一直都是被几大经典模型给统治着,如CNN.RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,而GCN主要是针对图结构的.社交网络.信息网络中有很多类似的结构.实际…
以下学习内容参考了:1,2, 0.首先回忆CNN,卷积神经网络的结构和特点 处理的数据特征:具有规则的空间结构(Euclidean domains),都可以采用一维或者二维的矩阵描述.(Convolutional neural network (CNN) gains great success on Euclidean data, e.g., image, text, audio, and video). 什么是卷积:卷积即固定数量邻域结点排序后,与相同数量的卷积核参数相乘求和. 离散卷积本质就…
图神经网络(GNN)目前的主流实现方式就是节点之间的信息汇聚,也就是类似于卷积网络的邻域加权和,比如图卷积网络(GCN).图注意力网络(GAT)等.下面根据GCN的实现原理使用Pytorch张量,和调用torch_geometric包,分别对Cora数据集进行节点分类实验. Cora是关于科学文献之间引用关系的图结构数据集.数据集包含一个图,图中包括2708篇文献(节点)和10556个引用关系(边).其中每个节点都有一个1433维的特征向量,即文献内容的嵌入向量.文献被分为七个类别:计算机科学.…
Python2.7$ python2 -m virtualenv pytorchenv$ source pytorchenv/bin/activate $ pip install ipython pytorch v1.3.0 # CUDA 10.0$ pip install torch==1.3.0+cu100 torchvision==0.4.1+cu100 -f https://download.pytorch.org/whl/torch_stable.html ..............…
今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map. 从动态图中,我们可以很明白的看出卷积实际上就是加权叠加. 同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度.如果我们需要输出的维度和输入的维度相等,这就需要填充(padding). 现在我们来看…
标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem Siddiqi 译者:Elliott Zheng 来源:ECCV 2018 Abstract 点云的特征学习已经显示出巨大的希望,引入了有效且可推广的深度学习框架,例如pointnet ++. 然而,到目前为止,点特征已经以独立和孤立的方式被抽象,忽略了相邻点的相对布局及其特征.在本文中,我们建议…
编辑:Happy 首发:AIWalker Paper:https://arxiv.org/abs/2103.13634 Code:https://github.com/hellloxiaotian/ACNet 本文是哈工大左旺孟老师团队在图像超分方面的最新工作,已被IEEE TSMC收录.本文将ACNet中的非对称卷积思想与LESRCNN进行组合,取得了更好的性能.由于作者尚未开源,故笔者进行了简单的复现,复现还是挺容易的,哈哈. Abstract 本文提出了一种非对称CNN网络ACNet,它由…