poj1163 the triangle 题解】的更多相关文章

ZOJ 4081 Little Sub and Pascal's Triangle 题解 题意 求杨辉三角第n行(从1开始计数)有几个奇数. 考察的其实是杨辉--帕斯卡三角的性质,或者说Gould's sequence的知识. 其实网上很多题解都给出了答案,但大多数都只是给了一个结论或者说找规律(虽然我也是选择打表找规律先做的),但是思考为什么的时候我百度了一下,在wiki看了一些东西. wiki Pascal's triangle(https://en.wikipedia.org/wiki/P…
The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36918   Accepted: 22117 Description 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed…
Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally…
Let's consider a triangle of numbers in which a number appears in the first line, two numbers appear in the second line, three in the third line, etc. Develop a program which will compute the largest of the sums of numbers that appear on the paths st…
The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 59698   Accepted: 35792 Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on…
Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44997   Accepted: 27174 Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that…
一.Description 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diago…
Content 一个矩形的顶点为 \((0,0)\),其对顶点为 \((x,y)\),现过 \((x,y)\) 作直线,分别交 \(x\) 轴和 \(y\) 轴于 \(A,B\) 两点,使得 \(\triangle OAB\) 为一个等腰直角三角形,求 \(A,B\) 点的坐标.(输出时 \(x\) 坐标小的先输出) 数据范围:\(-10^9\leqslant x,y\leqslant 10^9,x,y\neq 0\). Solution 这题是个数学题目,需要用到分类讨论. 这里先把草图给放上…
经典的数塔模型. 动态转移方程:  dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+p[i][j]; #include <iostream> #include <cstdio> #include <cmath> #include <vector> #include <cstring> #include <string> #include <algorithm> #include <stri…
经典的DP问题,DP思想也很直接: 直接贴代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ; int n, a[max_size][max_size]; ][max_size]; void initiate(){ memset(a,-,sizeof(a)); memset(f,,sizeof(f)); ;i&l…