每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本内容来源于CDA-DSC课程内容,原内容为<第16讲 汽车金融信用违约预测模型案例>. 建立违约预测模型的过程中,变量的筛选尤为重要.需要经历多次的筛选,在课程案例中通过了随机森林进行变量的粗筛,通过WOE转化+决策树模型进行变量细筛. 一.变量粗筛--随机森林模型 与randomForest包不同之处在于,party可以处理缺失值,而这个…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是树本身是高度相关的. 随机森林是套袋(方法)的延伸,除了基于多个测试数据样本构建树木之外,它还限制了可用于构建树木的特征,使得树木间具有差异.这反过来可以提升算法的表现. 在本教程中,您将了解如何在Python中从头开始实现随机森林算法. 完成本教程后,您将知道: 套袋决策树和随机森林算法的区别.…
1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本全集,从根结点到每个叶子结点的路径对应了一个判定测试序列.其基本流程如下所示: 输入:训练集D={(x1,y1), (x2, y2), ......, (xm, ym)} 属性集A={a1, a2, ......, ad} 过程:函数TreeGenerate(D, A),传入参数为训练集D与属性集A…
随机森林 这篇好好看看怎么调参的 我调的最佳参数如下,准确率为0.8428671546929973,细节看上篇文章: alg = RandomForestClassifier(n_estimators=145,random_state=1,max_depth=12,min_samples_leaf=1,min_samples_split=14,max_features=3)…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.信用风险建模中神经网络的应用 申请评分可以将神经网络+逻辑回归联合使用. <公平信用报告法>制约,强调评分卡的可解释性.所以…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果.在各种各样的问题中,随机森林一次又一次地展示出令人难以置信的强大,而与此同时它又是如此的方便实用. 需要大家注意的是,在上文中特别提到的是第一组测试结果,而非所有的结果,这是因为随机森林方法固然也有自己的局限性.在这篇文章中,我们将向你介绍运用随机森林构建预测模型时最令人感兴趣…
周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门资料: [关于决策树的基础知识参考:http://blog.csdn.net/holybin/article/details/22914417] 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,所以叫做随机森林.随机森林中的决策树之间是没有关联的,当测试数据进入随机森…
集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来说使用弱学习器集成足以获得好的性能,但在实践中出于种种考虑,例如希望使用较少的个体学习器,或是重用关于常见学习器的一些经验等,人们往往会使用比较强的学习器.当然,还得看实践的结果,有时也不一定集成相对强的学习器效果就会有多好. bagging的策略 1)bootstrap aggregation 2…