wqs二分】的更多相关文章

我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的暴力\(DP\),转移好写,形式优美,但复杂度不对 该怎样发现它的凸性质呢 1.打表√ 2.冷静分析一波,每一种球肯定是越多越好,于是我们先固定选择\(a\)个普通球,然后那\(b\)个大师球肯定是从大到小挑选.这样的话每多选一个,新增的收益就会下降一点,也就是说这是个上凸函数.(口胡如果假的话,就…
今天模拟赛有一道林克卡特树,完全没有思路 赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了. 有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的子树中,选了\(j\)条链,\(k=0\)表示\(i\)不在链上,\(k=1\)表示\(i\)是链的一端,\(k=2\)表示\(i\)在链的中间 这样就随便转移了,就是个\(O(nk^2)\)的树上背包 然后呢,又傻了,这能怎么优化? 我先在这里Orz一下大佬BLUESKY007,没有学过wqs二分…
应用分析 它的作用就是题目给了一个选物品的限制条件,要求刚好选$m$个,让你最大化(最小化)权值, 然后其特点就是当选的物品越多的时候权值越大(越小). 算法分析 我们先不考虑物品限制条件, 假定我们要最大化权值. 然后其中我们二分一个$C$,表示选一次物品的附加权值, 如果我们$C$越大,我们选的物品个数越多,权值越大, 于是当选的物品个数大于$m$时,减小$C$,否则增大$C$, 最后计算答案的时候去掉$C$值的影响即可. Updata:这回还是讲一讲算法吧-->理论算法分析 首先我们拿到一…
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\) 或 \(O(nk)\) 的 \(\mathrm{DP}\),如果没有选择个数的限制的话,复杂度大概会降为 \(O(n)\) 级别. 先不考虑数量限制. 假设要最小化权值. 还是拿题说吧:给定长度为 \(n\) 的正整数序列,要求将该序列划分为 \(k\) 段,记每段之和为 \(sum(i)\),…
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来,而若选择不超过k条链则可能有链不得不被cut拆开,即使不会被拆开也可以通过选择单点来达到恰好k+1条(下设k=k+1). 那么问题变为在树上选择k条点不相交的链使边权和最大.最简单的dp就是设f[i][j]为i子树中选j条链的最大权值,且用一维012状态记录i这个点在子树中的度数,转移类似于一个树…
从一个题带入:[八省联考2018]林克卡特树lct——WQS二分 比较详细的: 题解 P4383 [[八省联考2018]林克卡特树lct] 简单总结和补充: 条件 凸函数,限制 方法: 二分斜率,找切点横纵坐标,判断k的位置 找切点坐标: 集体-mid*x(证明还是凸函数:f(x+2)-f(x+1)<=f(x+1)-f(x))仍然成立) 每次选择物品有额外代价, 找此时高点就是原凸包切点 为了避免凸包上多点共线并且线的横坐标区域包含k,从而使得不会二分到k, 我们ans不记录符合条件切点的纵坐标…
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走一段原树,走0(或不走),再走一段原树,所以要最大化原树的值的和. 选择最大两条 点不相交的链(注意:可以选择一个点,这时候链长为0).然后一定可以首尾连起来得到答案 k更大的时候,选择最大的k+1条两两不相交的路径,然后一定存在方案使之连接起来,一定是最优解.(因为如果实际上最优解不用走k条0边,…
题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i]\) 当然是用越多越好 但是他很烦地给了个上限,我们就需要作出选择了 有一个很明显的\(O(n^3)\)的\(dp\),显然过不了 但我们有一个很好的\(WQS\)二分 我们非常想去掉这个上限 那就去掉吧,但是每用一次都要付出一个代价 我们二分这个代价,当使用次数恰好为为\(a\)和\(b\)时就是…
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \leq k \leq n \leq 10^5, -10^9 \leq a_i \leq 10^9\) 先假装都会 \(1 \leq k \leq n \leq 1000\) 的 \(dp\) 做法以及 \(k = 1\) 的子问题 实际上这个问题还可以是个费用流模型: 对于序列中每一个点 \(i\)…
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑战,它的规则是这样子的:现在有一个N 个点的 树(Tree),每条边有一个整数边权vi ,若vi >= 0,表示走这条边会获得vi 的收益:若vi < 0 ,则表示走这条边需要支付- vi 的过路费.小L 需要控制主角Link 切掉(Cut)树上的 恰好K 条边,然后再连接 K 条边权为 0 的边…