Mahout系列之----距离度量】的更多相关文章

   x = (x1,...,xn) 和y = (y1,...,yn) 之间的距离为 (1)欧氏距离   EuclideanDistanceMeasure (2)曼哈顿距离  ManhattanDistanceMeasure (3)马氏距离MahalanobisDistanceMeasure 马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信…
Canopy 算法,流程简单,容易实现,一下是算法 (1)设样本集合为S,确定两个阈值t1和t2,且t1>t2. (2)任取一个样本点p属于S,作为一个Canopy,记为C,从S中移除p. (3)计算S中所有点到p的距离dist (4)若dist<t1,则将相应点归到C,作为弱关联. (5)若dist<t2,则将相应点移出S,作为强关联. (6)重复(2)~(5),直至S为空. 上面的过程可以看出,dist<t2的点属于有且仅有一个簇,t2<dist<t1 的点可能属于…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图. 1. 欧氏距离 欧氏距离是最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 $x = (x_1,\cdots,x_n)$ 和$y = (y_2,\cdots,y_n)$之间的距离为: $$…
http://blog.csdn.net/pipisorry/article/details/48882167 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之局部敏感哈希LSH的距离度量方法 Distance Measures距离度量方法 {There are many other notions of similarity(beyond jaccard similarity) or distance and whi…
1. 欧氏距离(Euclidean Distance)        欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离: (4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as…
概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 . 1.卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为 (i=1,2,3,…,k) 其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率.i水平的期望频数Ei等于总频数n×i水平的期望概率pi.当n比较大时,χ2统计量近似服从k-1(计算Ei时用到的参数个数)个自由度的卡方分布. 卡方检验经常用来检…
特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数据的维度(即特征的数量)相对于样本量来说比较大时,特征工程就具有较高的失败风险. 机器学习方法 1.机器学习方法一般都具有以下几部分: 1>模型的表示: 2>用于评估模型优度的目标函数: 3>一种优化方法,可以通过学习找出一个模型,使目标函数值最小化或最大化.2.机器学习一般分为监督式学习和…
1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=…