数据结构之并查集Union-Find Sets】的更多相关文章

议题:并查集(Union-Find Sets) 分析: 一种树型数据结构,用于处理不相交集合(Disjoint Sets)的合并以及查询:一开始让所有元素独立成树,也就是只有根节点的树:然后根据需要将关联的元素(树)进行合并:合并的方式仅仅是将一棵树最原始的节点的父亲索引指向另一棵树: 优化:加入一个rank数组存储节点深度的下界(从当前节点到其最远子节点的距离),从而可以启发式的对树进行合并,从而减少树的深度,防止树的退化:使 得包含较少节点的树根指向包含较多节点的树根,具体指代为树的高度:另…
1.  概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 2.  基本操作 并查集是一种非常简单的数据结构,它主要涉及两个基本操作,分别为: A. 合并两个不相交集合 B. 判断两个元素是否属于同一个集合 (1)       合并两个不相交集合(Union(x,y)) 合并操作很简单:先设置一个数组Father[x],表示x的"父亲"的编号.那么,合并两个不相交集合的方…
一.关于并查集 并查集(Union-Find)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.并查集(Union-Find)从名字可以看出,主要它涉及两种基本操作:合并和查找.这说明,初始时并查集中的元素是不相交的,经过一系列的基本操作(Union),最终合并成一个大的集合. 二.并查集的设计和基本实现 1.并查集接口的设计 public interface UF { int getSize(); boolean isConnected(int p,…
一.并查集的概念:     首先,为了引出并查集,先介绍几个概念:     1.等价关系(Equivalent Relation)     自反性.对称性.传递性.     如果a和b存在等价关系,记为a~b.     2.等价类:     一个元素a(a属于S)的等价类是S的一个子集,它包含所有与a有关系的元素.注意,等价类形成对S的一个划分:S的每一个成员恰好互斥地出现在一个等价类中.为了确定是否a~b,我们仅需验证a和b是否属于同一个等价类即可.     3.并查集:     即为等价类,…
概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个: Union(x, y):把元素x 和元素y 所在的集合合并,要求x 和y 所在的集合不相交,如果相交则不合并. Find(x):找到元素x 所在的集合的代表,该操作也可以用于判断两个元素是否位于同一个集合,只要将它们各自的代表比较一下就可以了. 实现: 并查集的实现原理也比较简单,就是使用树来表…
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述. 并查集是一种树型的数据结构,用于处理…
[注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q<=10000. 对于50% 的数据,1<=N,Q<=100000,且数据均为官方数据. 对于100% 的数据,1<=N,Q<=1000000. 请注意常数因子对于程序运行的影响. 并查集很简单,并查集就是倒序处理,表示删除一个点的标记,删除后不会再加回来,删完后,合并当前点与其…
本题也是个标准的并查集题解. 操作完并查集之后,就是要找和0节点在同一个集合的元素有多少. 注意这个操作,须要先找到0的父母节点.然后查找有多少个节点的额父母节点和0的父母节点同样. 这个时候须要对每一个节点使用find parent操作.由于最后状态的时候,节点的parent不一定是本集合的根节点. #include <stdio.h> const int MAX_N = 30001; struct SubSet { int p, rank; }sub[MAX_N]; int N, M; v…
并查集(Disjoint Set)用来判断已有的数据是否构成环. 在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查集来判断一下这个路径是否会构成环. 思路 遍历图的每一条边,按照下面的原则将对应的两个顶点添加到集合中: 如果两个顶点都不属于任一集合,则创建新的集合,并将这两个顶点放入 如果两个顶点都已经属于某个集合,则已经构成环,退出 如果有一个顶点已经属于某个集合,则将另一个顶点也加入这个集合 为了代码上的统…
对于一组数据,主要支持两种动作: union isConnected public interface UF { int getSize(); boolean isConnected(int p,int q); void unionElements(int p,int q); } public class UnionFind1 implements UF{ private int[] id; public UnionFind1(int size){ id=new int[size]; for (…