哈尔特征Haar】的更多相关文章

哈尔特征(Haar-like features) 是用于物体识别的一种数字图像特征.它们因为与哈尔小波转换 极为相似而得名,是第一种即时的人脸检测運算. 历史上,直接使用图像的强度(就是图像每一个像素点的RGB值)使得特征的计算强度很大.帕帕乔治奥等人提出可以使用基于哈尔小波的特征而不是图像强度[1] .维奥拉和琼斯[2]进而提出了哈尔特征.哈尔特征使用检测窗口中指定位置的相邻矩形,计算每一个矩形的像素和并取其差值.然后用这些差值来对图像的子区域进行分类. 例如,当前有一个人脸图像集合.通过观察…
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106144767各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究红胖子(红模仿)的博文大全:开发技术集合(包含Qt实…
转载链接:http://blog.csdn.net/lanxuecc/article/details/52222369 Haar特征 Haar特征原理综述 Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征.它分为三类:边缘特征.线性特征.中心特征和对角线特征.用黑白两种矩形框组合成特征模板,在特征模板内用 黑色矩形像素和 减去 白色矩形像素和来表示这个模版的特征值.例如:脸部的一些特征能由矩形模块差值特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜…
哈尔小波转换是于1909年由Alfréd Haar所提出,是小波变换(Wavelet transform)中最简单的一种变换,也是最早提出的小波变换. Alfréd Haar,1885~1933,匈牙利数学家.哥廷根大学博士,导师是David Hilbert.Franz Joseph University教授.Franz Joseph University是一所现在已经不存在的大学,有“小哥廷根”的称号,因为这里的数学系有大量的哥廷根大学毕业生执教.大学所在地Kolozsvár,在二战前后,一会…
http://blog.csdn.net/xiaowei_cqu/article/details/8216109 Haar特征/矩形特征 Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去白色矩形所有像素值的和. 看过Rainer Lienhart文章的人知道,Rainer Lienhart在文章中给出了计算特定图像面积内Haar特征个数公式.小女才拙,到最后也没推出那个公式来,还望看明白的大牛留言指教~ Haar特征个数计算 Rainer Lienhart计算Haar特征个数的公式…
因为人脸检测项目.用途OpenCV在旧分类中的训练效果.因此该检测方法中所使用的分类归纳.加上自己的一些理解.重印一些好文章记录. 文章http://www.61ic.com/Article/DaVinci/TMS320DM646x/201310/50733.html攻克了下面函数移植到DSP上的一些问题 以下为HAAR特征检測的详细流程:http://blog.csdn.net/nongfu_spring/article/details/38977555 一.在计算每一个窗体的haar值时.使…
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主要有两大类:基于知识和基于统计. 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.主要包括模板匹配.人脸特征.形状与边缘.纹理特性.颜色特征等方法. 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计…
参考:http://www.cnblogs.com/ronny/p/4045979.html,博主对源码进行了分析,不过很多没看明白. 分为几个部分.积分图:借助积分图像,图像与高斯二阶微分模板的滤波转化为对积分图像的加减运算.在哈尔特征中也用到这个. DoH近似:将模板与图产像的卷积转换为盒子滤波运算,我们需要对高斯二阶微分模板进行简化,进而对Hessian矩阵行列式的值进行简化.使用近似的Hessian矩阵行列式的极大值检测斑点, 使用近似的Hessian矩阵行列式来表示图像中某一点x处的斑…
小波变换的基本思想是用一组小波函数或者基函数表示一个函数或者信号,例如图像信号.为了理解什么是小波变换,下面用一个具体的例子来说明小波变换的过程. 1. 求有限信号的均值和差值 [例] 假设有一幅分辨率只有4个像素 的一维图像,对应的像素值或者叫做图像位置的系数分别为:                   [9  7  3  5] 计算它的哈尔小波变换系数. 计算步骤如下:    步骤1:求均值(averaging).计算相邻像素对的平均值,得到一幅分辨率比较低的新图像,它的像素数目变成了2个,…
来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发一套库和标准用于评估当前最先进的跟踪算法仍然是极其重要的.在简单回顾近年来在线目标跟踪的研究进展后,我们以多种评价标准进行了大量的实验,用于研究这些算法的性能.为了便于性能评估和分析,测试图片序列分别被标注了不同的特性.通过定量分析结果,我们得出了实现鲁棒性跟踪的有效方法,并给出了目标跟踪领域潜在的…