R语言绘制QQ图】的更多相关文章

无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)…
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接  https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram…
与直方图相比,茎叶图更能细致的看出数据分布情况! 代码: > x<-c(25, 45, 50, 54, 55, 61, 64, 68, 72, 75, 75,+ 78, 79, 81, 83, 84, 84, 84, 85, 86, 86, 86,+ 87, 89, 89, 89, 90, 91, 91, 92, 100)> stem(x) The decimal point is 1 digit(s) to the right of the | 2 | 5 3 | 4 | 5 5 |…
好久没发点新的作品了.......也许...... Que sera, seraWhatever will be, will be…
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,…
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL…
先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始 首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo…
1.获取数据 从 QQ 消息管理器中导出消息记录,保存的文本类型选择 txt 文件.这里获取的是某群从 2016-04-18 到 2016-05-07 期间的聊天记录,记录样本如下所示. 消息记录(此消息记录为文本格式,不支持重新导入) ================================================================ 消息分组:我的QQ群 =======================================================…
##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stations <- arrange(stations,line,line_id) lin…
脸谱图和星图类似,但它却比星图可以表示更多的数据维度.用脸谱来分析多维度数据,即将P个维度的数据用人脸部位的形状或大小来表征.脸谱图在平面上能够形象的表示多维度数据并给人以直观的印象,可帮助使用者形象记忆分析结果,提高判断能力,加快分析速度.目前已应用于多地域经济战略指标数据分析,空间数据可视化等领域. 脸谱图一般采用15个指标,各指标代表的面部特征为: 1 脸的高度 2脸的宽度3 脸型4嘴巴厚度  5, 嘴巴宽度6 微笑7 眼睛的高度8 眼睛宽度 9 头发长度 10 头发宽度11头发风格12…