SCOI2009游戏 (数论+dp)】的更多相关文章

ywy神犇太巨辣!!一下就明白了!! 题意:求$lcm(a_1,a_2,...,a_k)$的种类,其中$\Sigma\space a_i <=n$,$a_i$相当于环长 此处的$DP$,相当于是在求$lcm(a_1,a_2,...,a_k)$按算术基本定理分解的式子的种类. 感性理解一下,一堆>=2的数,加起来一定比乘起来小,但是我们又要保证他们互质(否则就亏了,不如同时去掉gcd),所以就每个数就是一个质数的幂. 所以这一堆数大致就是形如$p_i^{k_i}$这种样子的 所以可以背包转移:把…
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai,不足n的话,我们令其他循环长度为1, 补到=n为止. 这样它们的lcm显然是=m的. 然后就是一个背包了...dp(i, j) = dp(i - 1, j) + ∑1≤t≤adp( i - 1, j - pt ) 表示前i个质数, 和为j有多少中方案 #include<bits/stdc++.h>…
题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个环构成,这些环的长度和为 n . 因此,就是要求出和为 n 的正整数的最小公倍数的可能情况. 有一个性质:这些正整数中有合数存在的最小公倍数,都可以用全是质数的情况包含. 所以我们只要求出用质数组成的情况就可以了.我们要求的就是,若干个质数,它们的和小于等于 n,它们的最小公倍数情况. 先筛法求出…
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... 通过枚举每个质因子的指数来求$lcm$ $d[i][j]$表示前$i$个质因子当前和为$j$的方案数 转移枚举质因子的指数 但这样我们忽略了可以划分出$1$,所以统计答案时枚举$j$ 或者我们直接初始化$d[0][i]=1$ #include<iostream> #include<cstdi…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4473192.html 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ],cnt; ][],ans; ]; void init() { ;i<=n;i+…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种数 考虑一个Lcm=p1^a1 * p2^a2 * …… pk^ak 是否可能出现 WJMZBMR提出,能出现的充要条件是p1^a1+p2^a2+……+pk^ak<=n 证明: 先证必要性: ∵p1^a1 p2^a2 …… pk^ak 这k个数的最小公倍数正好是lcm 且 k<n (n以内的质数的…
1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2,3,……,N.…
1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][Discuss] Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2…
[BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数,他们的\(lcm\)有多少种不同的情况.那么显然还可以变成有多少个数的\(\sum_{i}p_i^{a_i}\le n\) 这样子随便\(dp\)一下就好了. #include<iostream> #include<cstdio> using namespace std; #defi…
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个定理: 若Z可以作为几个数最小公倍数, 令 Z=p1^a1 * p2^a2 * ……  pi为质数 那么 当这几个数 的分别为 p1^a1  , p2^a2 …… 时, 这几个数的和最小,为Σ pi^ai 所以可以得出 如果将这个和最小化 之后 <=n ,那么 这个Z就能取到 (和小于n可以补1)…