首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
numpy:dot与multiply
】的更多相关文章
numpy:dot与multiply
http://blog.csdn.net/iamzhangzhuping/article/details/52370241…
python基础--numpy.dot
# *_*coding:utf-8 *_* # athor:auto import numpy dot = numpy.dot([0.100, 0.200],2.) print(dot) #[ 0.2 0.4] 理解是numpy.dot第一个参数是点的坐标值,后面是倍率…
python 中numpy dot函数的使用方法
这个函数在的数字信号处理中用处还是比较广泛的,函数的具体定义如下所示: numpy.dot(a, b, out=None) 该函数的作用是获取两个元素a,b的乘积,表示的含义如下所示: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) 使用方法如下所示: 单个数: >>> np.dot(3, 4) 12 复数: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) 二维矩阵: >>>…
numpy里*与dot与multiply
一.* , dot() multiply() 1, 对于array来说,(* 和 dot()运算不同, * 和 multiply()运算相同) *和multiply() 是每个元素对应相乘 dot() 是矩阵乘法 2, 对于matrix来说,(* 和 multiply()运算不同,* 和 dot()运算相同) * 和dot() 是矩阵乘法 multiply() 是每个元素对应相乘 3, 混合的时候(与矩阵同) multiply 为对应乘 dot为矩阵乘法(矩阵在前数组在后时,均为一维时数…
Numpy Study 2----* dot multiply区别
使用numpy时,跟matlab不同: 1.* dot() multiply() 对于array来说,* 和 dot()运算不同 *是每个元素对应相乘 dot()是矩阵乘法 对于matrix来说,* 和 multiply() 运算不同 * 是矩阵乘法 multiply() 是每个元素对应相乘 A B为array MA MB为matrix multiply(MA, MB)对应元素相乘 dot(MA, MB)矩阵乘法 注意:对应元素相乘时,矩阵大小必须相同:矩阵相乘时,矩阵大小要满足矩阵相乘要…
Python 中的几种矩阵乘法 np.dot, np.multiply, *【转】
本文转载自:https://blog.csdn.net/u012609509/article/details/70230204 Python中的几种矩阵乘法1. 同线性代数中矩阵乘法的定义: np.dot()np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积.见如下Python代码: import numpy as np # 2-D array: 2 x 3two_dim_matrix_one = np.array([[1,…
Python 中的几种矩阵乘法 np.dot, np.multiply, *
使用array时,运算符 * 用于计算数量积(点乘),函数 dot() 用于计算矢量积(叉乘).使用matrix时,运算符 * 用于计算矢量积,函数 multiply() 用于计算数量积. 下面是使用array时: 1. 同线性代数中矩阵乘法的定义: np.dot() np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积. 2. 对应元素相乘 element-wise product: np.multiply(), 或 * 在…
理解numpy.dot()
import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) print(np.dot(a,b)) 计算结果: 1,2. 11,12. 1 * 11 + 2 * 13. 1 * 12 + 2 * 14. 37,40 3,4. 13,14. 3 * 11 + 4 * 13. 3 * 12 + 4 * 14. 85,92…
理解numpy dot函数
python代码 x = np.array([[1,3],[1,4]]) y = np.array([[2,2],[3,1]]) print np.dot(x,y) 结果 [[11 5] [14 6]] 结算过程, 行 * 列 1 3 2 2 1*2 + 3 * 3 1 * 2 + 3 * 1 11 51 4 3 1 1*2 + 4 * 3 1 * 2 + 4 * 1 14 6…
对NumPy中dot()函数的理解
今天学习到numpy基本的运算方法,遇到了一个让我比较难理解的问题.就是dot函数是如何对矩阵进行运算的. 一.dot()的使用 参考文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html dot()返回的是两个数组的点积(dot product) 1.如果处理的是一维数组,则得到的是两数组的內积(顺便去补一下数学知识) In : d = np.arange(0,9)Out: array([0, 1, 2, 3…