BP算法细节 参数说明:假设有n层.J表示代价函数,和上面的E是同样的意思,只不过用不同的字母写而已. 分析:要想知道第l层的第i个结点的残差,必须知道层已经计算出来了残差,你只要把后面一层的每个结点j的残差乘以该结点与这一层的结点i相连的权值,然后加和,最后别忘了乘以这一层的激活方式的导数. 最后说明一点,BP传播,计算各层的各点的残差是关键,残差是总的代价函数对于该点的net的偏导,从倒数第二层开始,求残差就要用到其后面的一层的各个残差,只要用后面一层的各个结点残差乘以其与这一层这个的结点所…
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法.该方法对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数. 在神经网络上执行梯度下降法的主要算法.该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数. 我们将以全连接层,激活函数采用 Sigm…
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\…
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在22号乘坐飞机从沈阳乘坐飞机到杭州,恰好我是一位密切接触人员的后三排,就这样我成为了次密切接触人员,人下飞机刚到杭州就被疾控中心带走了,享受了全免费的隔离套餐,不得不说疾控中心大数据把控是真的有力度.在这一段时间,也让我沉下心来去做了点事,之前一直鸽的公众号也开始写上了...不过隔离期间确实让我这么…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/263 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D Andrej Karpathy,前特斯拉 AI 高级总监.曾设计并担任斯坦福深度学习课程 CS231n 讲师.OpenAI 创始成员和研究科学家.在 7 月离职特斯拉后,Andrej 在家录制了一个详解反向传播的课程,自信表示"这是 8 年来领域内对神经网络和反向传播的最佳讲解",并在推特打赌"看不懂就吃鞋". 虽然很想看 Andrej 直播吃鞋…
转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读的话,优秀的国人已经把它翻译出来了. 一步一步弄懂反向传播的例子(中文翻译) 然后我使用了那个博客的图片.这次的目的主要是对那个博客的一个补充.但是首先我觉得先用面向过程的思想来实现一遍感觉会好一点. 随便把文中省略的公式给大家给写出来.大家可以先看那篇博文 import numpy as np #…
这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使用矩阵微分的记号进行推导,整个过程十分简洁.而且这种矩阵形式有一个非常大的优势就是对照其进行编程实现时非常方便. 但其实用标量计算推导也有一定的好处,比如可以清楚地知道某个权重是被谁所影响的. 前向传播过程:多层Logistic回归 记号约定: $L$:神经网络的层数.输入层不算. $n^l$:第…
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全互联,神经元之间不存在同层或跨层连接:输入层神经元仅接受外界输入,不进行函数处理:隐藏层与输出层包含功能神经元,对信号进行加工:最终结果由输出层神经元输出.“前馈”是说网络拓补结构上不存在环路或回路,而不是指网络信号不能向后传递. 前向传播(FP) 所谓前向传播,就是根据一些列包含偏置项的权重矩阵Θ…