[NOI2012] 骑行川藏 | 求导 二分】的更多相关文章

一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就好啦.传送门:选修2-2 感性理解一下这道题: 一开始,我们可以给所有路段随便分配一个速度. 接下来,我们需要在一些路段上耗费一定能量用来提速,以此缩短一定时间.不同路段上,花费单位能量能缩短的时间(简称"性价比")是不同的,所以如果我们要模拟这个过程,一定是每时每刻都在当前性价比最高的路…
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: 504[Submit][Status][Discuss] Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配…
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配好自己的体力是一件非常重要的事情.由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响).某一天他打算骑N段路,每一段内的路况可视为相同:对于第i段路,我们给出有关这段路况的3个参数…
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配好自己的体力是一件非常重要的事情. 由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响).某一天他打算骑\(N\)段路,每一段内的路况可视为相同:对于第\(i\)段路,我们给出有关这段路况的3个参…
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配好自己的体力是一件非常重要的事情. 由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响).某一天他打算骑 N段路,每一段内的路况可视为相同:对于第i段路,我们给出有关这段路况的3个参…
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\dots,x_n) = E\) 我们需要求\(f\)在限制\(g\)下的极值 如图 当\(f\)取到最值时,必然与\(g\)的等高线相切 所以我们只需找出这个切点 切点处两函数的梯度向量平行\({\nabla f~//~\nabla g}\) 梯度向量的每一维就是该维下的偏导函数 \[{\nabla…
原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i(x_1,x_2,...,x_n)=0\) 引入松弛变量\(\alpha _1-\alpha _m\),构造拉格朗日函数如下: \[L(x_1,x_2,...,x_n,\alpha _1,\alpha _2,...,\alpha _m)=f(x_1,x_2,...,x_n)+\sum\limits_{…
详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details/51346228 用拉格朗日乘数法,求了偏导之后二分λ.然后求完偏导的那个一元三次式的解可以二分求,因为是单调递增的. 总复杂度\( O(nlog^2n) \) #include<cstdio> #include<cmath> using namespace std; const i…
题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \sum_{i=1}^{n} \frac{s_i}{v_i} $ 分析 首先是贪心,很显然小于等于号要取等号,即问题转化为,满足\(g(V) = \sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 = E\),最小化$ f(V) = \sum_{i=1}^{n} \frac{s_…
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\) 先考虑贪心,因为最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\),所以\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i=E_U\)时为最优情况. 发现是一个有约束的极值问题,考虑用拉格朗日乘数法来解决…