机器学习【三】k-近邻(kNN)算法】的更多相关文章

(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近邻算法,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(就是上面提到的K个邻居),如果这K个实例的多数属于某个类,就将该输入实例分类到这个类中,如下图所示.                                上图中有两种不同类别的样本数据,分别用蓝色正…
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import operator from collections import Counter #KNN需要测试集,训练集,标签和k值 #测试集:你需要测试的数据 #训练集:给定的标准数据 #标签:每个标准数据的类别 #k值 :测试集和训练集相比较下前K个最相识的训练集的值 # 用KNN算法找出测试集的类别 #…
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够的,更深入的研究分析可以参见其他国外的论文及站点,此处不再一一列举.机器学习更多的是建模应用,这里仅是一个概要总结,并归纳分析各种算法优缺点,这些都是要了如指掌并且非常熟悉的. 关于机器学习: 基本上目前互联网公司的机器学习/…
简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异同. 算法描述 knn 算法思路:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. k近邻模型的三个基本要素: k值的选择:k值的选择会对结果产生重大影响.较小的k值可以减少近似误差,但是会增加估计误差:较大的k值可以减小估计误差,但…
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种"懒惰"的学习算法 (lazy learning),因为实际上它并没有"训练"的过程,也不产生一个真实意义上的"模型",而只是一字不差地将所有训练样本保存起来,等到需要对新样本进行分类的时候,将新样本与所有训练样本进行比较,找出与其距离最接近的 k 个样本,…
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用距离来进行判别 程序清单2-1看不太明白,于是把具体的inX,dataSet,labels,k带进去大致明白了意思,这里不做演示 书上用字典进行存储,然后对字典的值进行排序,这里不太清楚故去学习了一下 这些理清楚之后,首先来看如何对字典的值进行排序: dict1 = {'a': 1, 'b': 4,…
首先先介绍一下knn的基本原理: KNN是通过计算不同特征值之间的距离进行分类. 整体的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN算法要解决的核心问题是K值选择,它会直接影响分类结果. 如果选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是…
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合内容: 1.算法概述 K近邻算法是一种基本分类和回归方法:分类时,根据其K个最近邻的训练实例的类别,通过多数表决等方式进行预测:k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的"模型"(Cover和Hart 在1968)--参考自<统计学习方法> 回归是根据k个最近邻预测值计算的平均值--参考自scikit-learn官网 2.算法推导 2.1 kNN三…