Papers | 图像/视频增强 + 深度学习】的更多相关文章

目录 I. ARCNN 1. Motivation 2. Contribution 3. Artifacts Reduction Convolutional Neural Networks (ARCNN) II. DnCNN 1. Introduction 2. Denoising Convolutional Neural Networks (DnCNN) network III. Li et al. IV. DCAD 1. Introduction 2. Deep CNN-based Auto…
参考资料: http://www.cnblogs.com/emouse/archive/2013/03/04/2943243.htmlhttp://blog.csdn.net/eastmoon502136/article/details/8190262 USB摄像头驱动是怎么来工作的: 驱动程序,它能够运行起来的配角叫做帧缓冲,它的作用是用于缓存一帧图像一帧数据的:那么他们俩配合之后就能够正常的工作了,针对驱动程序,首先由一个输入队列,输入队列里面有很多个帧缓冲,当驱动程序从摄像头抓取到一帧图像…
NeuralEnhance是使用深度学习训练的提高图像分辨率的模型,使用Python开发,项目地址:https://github.com/alexjc/neural-enhance. 貌似很多电影都有这样的情节:对看不清的低分辨率图像(车牌.面部)进行某种处理来提高图像分辨率. NeuralEnhance比普通插值算法要优秀的多,你还可以通过提高神经元数量(或是使用相似的图片样本进行训练)来获得更好的结果. 它现在可以训练神经网络中的2倍甚至4倍放大到您的图像.通过增加神经元数量或使用类似于低分…
背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或传入视频文件进行推理,从视频中抽取帧进行目标检测等任务.对于大点的模型,推理的速度是赶不上摄像头或视频的帧率的,如果我们使用单线程进行处理,即读取一帧检测一帧,推理会堵塞视频的正常传输,表现出来就是摄像头视频有很大的延迟,如果是对实时性要求较高,这种延迟是难以接受的.因此,采用多线程的方法,将视频读取与深度学习推理放在两个线程里,互不影响,达到实时的效果. 实现方法 将摄像头的视频读取放入子线程,充当一个生产者的角色,将推理放入主线程,…
V4L2摄像编程模型 1.打开摄像头设备文件 2.获取驱动信息-VIDIOC_QUERYCAP 3.设置图像格式-VIDIOC_S_FMT 4.申请帧缓冲-VIDIOC_REQBUFS 5.获取帧缓冲的地址长度信息-VIDIOC_QUERYBUF 6.使用mmap把内核空间的帧缓冲映射到用户空间 7.帧缓冲入队列-VIDIOC_QBUF 8.开始采集图像-VIDIOC_STREAMON 9.取出帧缓冲(出队)-VIDIOC_DQBUF 10.访问帧缓冲 11.帧缓冲重新入队-VIDIOC_QBU…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮助您彻底理解卷积. 已经有一些关于深度学习卷积的博客文章,但我发现他们都对不必要的数学细节高度混淆,这些细节没有以任何有意义的方式进一步理解.这篇博客文章也会有很多数学细节,但我会从概念的角度来看待他们,在这里我用每个人都应该能够理解的图像表示底层数学.这篇博文的第一部分是针对任何想要了解深度学习中…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…