p4180 次小生成树】的更多相关文章

传送门 分析: 次小生成树的求法有两种,最大众的一种是通过倍增LCA找环中最大边求解,而这里我介绍一种神奇的O(nlogn) 做法: 我们先建立最小生成树,因为我们用kruskal求解是边的大小已经按升序排列,所以相同情况下,先枚举的边一定更优,所以我们每一次暴力的找非树边所连两点的LCA,并在寻找过程中对经过的边染色同时将其加入并查集以防止其二次查询(为何只需查找一次之前已经说过),然后在最后,我们只需找出所染颜色所代表的边的权值减去被染色的边的权值的最小值即可.因为被染色的树边共有n-1条,…
P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删边时权值不改变,就不满足条件了 所以我们可以先用倍增处理出最小生成树上任意2点之间的最大边权和次大边权 枚举每条不在最小生成树上的边,接到树上,再删去最大边(与枚举边的边权不等)或次大边(最大边与枚举边的边权相等),做个判断 判断边(u,v)时 我们只要询问(u,lca)和(v,lca)就可以了 找…
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 非严格次小生成树:枚举每一条不在最小生成树上的边,加入到最小生成树中构成一个环.删去这个环上的最大值.(此最大值有可能与加入生成树中的边相等,故为非严格次小生成树.)重复此操作取min,得到次小生成树.(基于kruskal实现.) 严格次小生成树:与非严格次小生成树类似,不同在于为了避免删去环上的…
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵树中的n-1条边为“树边” 其他m-n+1条边为“非树边” 枚举每条非树边(x,y,z)添加到最小生成树中 可以在x,y之间构成一个环 设x,y之间的路径最大值为val1 次大值为val2(val1>val2) 则有以下两种情况 当z>val1时 则把val1对应的边换成(x,y,z) 得到一个候…
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P\)说,让小\(C\)求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是\(E_M\),严格次小生成树选择的边集是\(E_S\),那么需要满足:(\(value(e)\)表示边\(e\)的权值)\…
题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是$E_M$,严格次小生成树选择的边集是$E_S$,那么需要满足:($value(e)$表示边e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. 输入输出格式: 输入格式: 第一行包含两个整数N和M,表示无向图的点数与边数.接下来M行…
P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次小生成树之间(不相等). 思路 先求出一颗最小生成树,发现严格次小生成树一定是其断了一条边并加了一条边且边权和的增加量最小. 那么我们继续在最小生成树上做.对于每一条不是最小生成树上的边,求出其两端两点间在最小生成树上路径上的边的最大值.然鹅,如果用倍增LCA找,发现如果求出来的最大值与该边权值相等…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可以由最小生成树删一条边再加一条边得到.我们枚举加上去的这一条边,加上去以后原\(mst\)会成为一个基环树,想让它次小就在这个环里找一条最长的边(不包含新加进去的)删掉就好.放在树上来讲,就是找到\(u\)到\(v\)路径上的最大值.这样我们就有了非严格次小生成树. 严格要怎么处理?我们需要排除新加…
严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的次小生成树.然而是严格的QAQ,于是得搞点别的东西来实现“严格”,维护个次大值就行.依次枚举每条边,如果这条边和加上这条边构成的环中最大的边边权相等,取次大值,否则取最大值. 参考代码: #include<cstdio> #include<algorithm> #define ll l…