机器学习(十四)— kMeans算法】的更多相关文章

<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化 elkan  K-Means 算法和大数据情况下的优化 Mini Batch K-Means算法. 聚类问题的一些概念: 无监督问题:我们的手里没有标签了 聚类:就是将相似的东西分到一组 聚类问题的难点:如何评估,如何调…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
一.聚类 聚类分析是非监督学习的很重要的领域.所谓非监督学习,就是数据是没有类别标记的,算法要从对原始数据的探索中提取出一定的规律.而聚类分析就是试图将数据集中的样本划分为若干个不相交的子集,每个子集称为一个“簇”.它的难点是不好调参和评估.下面是sklearn中对各种聚类算法的比较. 二.K-Means算法 KMeans算法在给定一个数k之后,能够将数据集分成k个“簇”={C1,C2,⋯,Ck}C={C1,C2,⋯,Ck},不论这种分类是否合理,或者是否有意义.算法需要最小化平方误差: 其中…
 转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼 文/不会停的蜗牛(简书作者)原文链接:http://www.jianshu.com/p/55a67c12d3e9 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普.以后有时间再对单个算法做深入地解析. 今天的算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素…
原文出处: 不会停的蜗牛    通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普.以后有时间再对单个算法做深入地解析. 今天的算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问题,通过…
算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问.这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上. 2. 随机森林 视频 在源数据中随机选取数据,组成几个子集 S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别 由…
EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言:      EM算法是机器学习十大经典算法之一.…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…